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❖ About me
❖ Project context
❖ Business perspective 
❖ Design and workflow, technical aspects 
❖ Model training and performance
❖ Conclusions and next steps

Overview
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❖ Business context:  

➢ Crystal based Materials - develop, manufacture, quality control.

❖ Background: 

➢ Understand structure/property relationships 

➢ X-ray images provide detailed microscopic view of structure

❖ Problem Statement: 

➢ Interpretation of X-ray images is not-fully automated. 

➢ Involves significant physical modeling trial and error

➢  Analysis requires a high level of expertise.

❖ Goal: 

➢ Enable rapid interpretation of X-ray images using CNN. 

Project context

Microscopic structure 

CNN
Time-consuming,
requires expertise

 Streamline 
approach
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Convolutional Neural Network (CNN): Type of deep learning model 
specifically designed for processing and analyzing image data.



❖ Business question: 
➢ How to enhance the design space for profitable materials at lower cost?

❖ Data science flow constraint:
➢ Shortage of available labeled X-ray data for training.  

❖ Cost effective Strategy: 
➢ Leverage a physics-based model to simulate data of X-ray images for 

training/test.

❖ Design and workflow: next slide …..

Business 
Perspective

Domains: [Companies] 
● Organic semiconductors: GE, Sony, Samsung, LG, Sigma-Aldrich.
● Energy storage: ABB LTD, Eos Energy Enterprises, BVSPC, Tesvolt.
● Pharmaceuticals: Pfizer, Merck, Eli Lilly.
● Ceramics: Kyocera, Corning Inc., Murata, CoorsTek.
● Agrochemicals: Bayer CropScience, Syngenta, BASF. 
● Thin film materials: Vital Materials, Reynard Corporation, Kodak. 
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Stakeholders: Researchers, 
scientists, engineers, 

manufacturers.



Create

Measure Analyse

Understand and Innovate 

Decoding

Simulate

Encoded
variables

Training flow:

Material Evaluation flow:

Training 
inputs

Training 
Outputs

Feature 
eng.

Structure Model

Iterate 
Improve
redesign

CNN Regressor

??? Metrics: R2, MSE
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❖ Model Stages:
➢ 1. Decide and train.
➢ 2. Evaluate on simulated X-ray images
➢ 3. Evaluate on experimental X-ray images 

❖ CNN: 
➢ Evaluated small and large architecture

■ Inputs: 64x64 pixel X-ray Images
■ Outputs: encoding variables, Dimensionalities = 3, 8, 15.

➢ Different CNN for each resolution of training data  

Technical Overview

Total params: 
7,162,447

Total params: 
207,375

Small CNN

Large CNN

Activations: ReLU 
(output is linear) 6



CNN Training and Validation. 
❖ Datasets 5000x64x64 or 1000x64x64
❖ Batch size: 32, Epochs: 100
❖ Small CNN arch. performed better during evaluation with incremental training 

Small CNN Arch.

Large CNN Arch.

Dim. Arch. Data
points

Loss 
(MSE)

R2

3 small 5000 6.5E-4 0.997

8 small 5000 1.9E-3 0.986

15 small 5000 2.4E-3 0.974

15 small 10000 3.0E-4 0.997

15 large 10000 2.2E-3 0.976

Validation metrics
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CNN performance: example with simulated holdout data. 

Simulated(D:15)
X-ray Image 
input to 
CNNs 

Decoded Outputs from 
CNN predictions.

CNN output
Dimension 

R2 (Images) MSE(Images)

3 -0.034 0.309

8 0.113 0.265

15 0.675 0.097

D:3

D:8

D:15
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Performance at interpreting real X-ray data. 

Raw data

Corrected

Rapid CNN assisted interpretation of structure.Inputs

Image reconstruction, data 
compression, smoothing, 
normalization, re-scaling, 
(optional: Top-hat filter, image 
restoration in-painting). 
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Encoding Variables Structure rep. Sim. X-ray imageObs. X-ray image



❖ Summary:
➢ X-ray imaging interpretation:

■ not automated 
■ Requires high level analysis and expertise.
■ Lack of labeled data suitable for training.  

➢ Goal: Evaluate if CNN can be designed and integrated for streamlining.
❖ Conclusions:

➢ Successful proof of concept. 
■ CNN can be trained on simulated data to interpret real X-ray image. 

➢ Business Case Overview. (see next slide) 
❖ Next steps:

➢ Future case study: 
■ Enhance resolution
■ Incorporate molecular modeling. 

➢ Can an AGI system be implemented (VAE, cGANS, Deep Q learning)? 

Summary, conclusions and next steps
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Assumptions:

❖ Instrument upkeep cost is 
unchanged because it is 
never fully utilized. 

❖ Increasing X-ray image 
analysis by factor of 1 
results in Materials design 
enhancement of 0.5

❖ Cost of simulated data is 
negligible wrt. Rest of the 
portfolio

❖ Tradeoff. Less SME and 
More non-SME  

Business Case Overview 

Resource Current X-ray analysis pipeline CNN enabled X-ray analysis pipeline

Units/year
Cost/profit 
estimate Total Units/year

Cost/profit 
estimate Total

Materials Design 
Portfolio 100 $2,000,000

$200,000,000
150 $2,000,000

$300,000,000

Raw X-ray Data 
collection 40 -$20,000

-$800,000
200 -$20,000

-$4,000,000

Simulated Data 
collection 0 $0

$0
20000 $0

$2

X-ray Image 
analysis 5 $50,000

$250,000
105 $50,000

$5,250,000

SME workers 5 -$200,000 -$1,000,000 2 -$200,000 -$400,000
non-SME 
workers 10 -$60,000

-$600,000
15 -$60,000

-$900,000

Net Income $197,850,000 $299,950,002

Estimated net profit increase is of the order of ~50%
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Data Science Process
Interpret Online (public) or in-house (custom) 

Business question: What are details of materials design space 
that result in profitable properties such as improved strength, 
durability, or conductivity? What details reduce costs? 

Business answer: Desirable material 
asset has a known structure that can 
be manufactured and monitored at a 
specified cost.   

Data answer: Resulting structure/property 
relationships linked to interpreted X-ray 
images and materials are stored in data 
repositories (i.e. labeled data on materials and 
X-ray images) 

Industry/Domain: Semiconductors, energy storage, pharmaceuticals, ceramics, 
agrochemicals and thin-film materials.

Companies: 
● Organic semiconductors: GE, Sony, Samsung, LG, Sigma-Aldrich. 
● Pharmaceuticals: Pfizer, Merck, Eli Lilly and Abbvie.
● Ceramics: Kyocera, Corning Inc., Murata, CoorsTek.
● Agrochemicals: Bayer CropScience, Syngenta, BASF. 
● Thin film materials: Vital Materials, Reynard Corporation, Kodak. 

Business context:  Research and manufacturing, 
engineering and quality control of materials.

Stakeholders:  Researchers, scientists, engineers, 
manufacturers, and quality control personnel.

Design, manufacture

Measurements,
Imaging

How/What 
CNN
Training
data? 

CNN 
design,
 train 
Evaluate

Deploy
CNN for
Image 
analysis 

Interpret a solution
from CNN outputs: 
e.g. Simulated X-ray images, 
physical constants. 
Is there a structure/property 
relationship that can be 
exploited?

iterate

$
$

Data question: How to address shortage of 
available labeled X-ray data for training?

Problem statement: How to reduce trial and error in 
the analysis stage for X-ray images? 



Thank you !....

Questions ???  
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Appendix
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Encoding error due to statistical noise  
in simulated training data:

Raw X-ray data correction:

Outputs: encoding variables, 
Dimensionalities = 3, 8, 15.

before after

EDA

R2 distribution

MSE distribution

*cfs (Correlation Function Span)

Correlation function span (cfs)= 2, 3, 4.

cfs:2

cfs:3

cfs:4
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Overview
❏ Business use cases: Materials science, manufacturing, Mining, medical imaging and diagnoses, Education.   
❏ In most modern analytics for materials or biological research analytical data requires substantial modeling for 

practical interpretation. 
❏ We are exploring the application of CNN for a type of these Inversion problems(eg. Deconvolution, halftoning, 

super-resolution). 

Diffraction imaging: 

❏ It can be very difficult to identify the physical rules associated with how atoms decide to be structured in a 
crystal lattice. One way to do this is to study diffraction patterns. Often requires high level expertise (many 
trails) and costly technical/computing resources. 

❏ We explore a basic formulation for interpreting micro-structure from diffuse X-ray diffraction of crystalline 
materials.  I.e. (details of crystal growth and atomic ordering on lattices)

❏ In this simple exercise we are training CNNs on theoretical diffraction data and investigating how well it is able 
to interpret sections of observed  data. 

Final Objective: Deploy several CNNs available publicly online for a rapid general 
interpretation of diffraction image data for Microstructure. - Very time saving option 
available to a wide audience (not just SMEs).

Benefits: 

❏ Rapid interpretation of possible microstructure without tedious modeling or  preconditions for further models.
❏ Instantiate the benchmark for model complexity and CNN performance for this type of problem.
❏ Build and showcase skills for CNN utility for computer vision and  imaging as well as solving types of inverse 

problems through accelerating  pre-conditioning stages and reducing trial and error.  
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X-ray Beam

Crystal sample

Scattered 
X-rays

Observed 
Image

Crystal Structure w/o 
desirable properties 

Crystal Structure has 
desirable properties 

What are the details about the atomic or molecular structure 
that result in desirable properties?
  
 Understanding this relationship is important for developing new materials with desirable 
properties, such as improved strength, durability, or conductivity. This knowledge can be 
used to tailor the atomic or molecular structure of materials to achieve specific properties, 
which can be beneficial for various industries, 

Desirable properties of a good organic semiconductor include low cost, light weight, 
mechanical flexibility, easy processing, and abundant availability compared to inorganic 
materials. Organic semiconductors are generally low cost and can be easily processed 
under a less controlled environment compared to inorganic semiconductors. They should 
also have good electrical conductivity, high charge carrier mobility, and high stability under 
ambient conditions. In addition, they should have good solubility in common solvents, high 
thermal stability, and good film-forming properties. These properties make organic 
semiconductors attractive for use in optoelectronic devices such as organic light-emitting 
diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs)
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Different CNN are trained 
because the outputs are 
different orders of encoding 
(CFS type)

CFS Encoding 2D lattice representation Feature Engineering  
(Fourier Transform)
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CFS2 type 
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CFS3 type

23



CFS4 type
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Create

Measure Analyse

Understand and Innovate 
??? Metrics: R2, MSE

Decoding

Simulate

Encoded
variables

Training flow:

Material Evaluation flow:

Training 
inputs

Training 
Outputs

Feature 
eng.

Structure Model

Iterate 
Improve
Design

CNN Regressor



Univariate distributions of CFS3 target coordinates
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Univariate distributions of CFS4 target coordinates
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How does simulation size and sampling size affect the theoretical images ??
(keep in mind the Relative size in comparison to actual X-ray scattering from a real sample)

50x50 units
64x64 pixels 
(DFT: 8x25x25 lots) 96x96 units 64x64 pixels 

(DFT: 4x48x48 lots)

       Log(Int.) 

   
   

 P
[L

og
(In

t.)
] 

Intensity distribution above single image of CFS3  
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lots=8

lots=16

lots=32

lots=64
lots=64

lots=8
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The nature of any MC simulation is that even if we 
use the same input, changing the number seed at 
various stage ensures we will get a slightly different 
answer.   

Simulation Inputs encode 2D 
microstructure representation and 
calculated diffraction image for 
comparison.

30



Gen-type: CFS3
Gen-type: CFS4
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EDA: Random error in MC generation. 1000 random CFS vectors re-sampled from 
test/training data and compared with original sample.
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Intensity distributions in 5000 images of CFS2 theoretical test/train data for CNNCFS2  
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Intensity distribution single image of CFS3  Intensity distribution single image of CFS2  
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