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Problem statement

The state-of-the-art in X-ray imaging of crystalline materials provides a highly detailed view

of atomic or molecular scale structure that is still yet to be fully exploited by industry.

Uncovering such details leads to understanding structure-property relationships which leads

to optimising materials properties as well as reducing manufacturing costs. High throughput

of correctly interpreted and labelled X-ray images is limited. Inherent challenges in

interpretation are due to both a lack of automation and lack of expertise.

Successful interpretation of X-ray images still requires significant physical modelling,

ongoing trial and error with expensive high performance computing resources and a need for

this high level analysis to be performed by someone with significant expertise.

A general schematic for this part of the problem from the high level production development

pipeline is depicted in Figure 1. By empowering data interpretation workflows through
integration of a data science pipeline that can streamline the analysis process and provide

valuable insights into the properties of crystals, it will be possible to efficiently and accurately

analyse necessary details from large sets of raw X-ray images. It will further enable

technologies towards understanding the physical nature of atomic or molecular structure that

leads to desirable properties.

The underlying problem statement for the scope of a data science project is in how to apply

feature engineering and machine learning engineering towards enabling this rapid

interpretation of X-ray images. As we will endeavour to show later, this goal can be achieved

through developing a data science pipeline that incorporates a method based on

convolutional neural networks (CNNs). This approach is depicted in Figure 2 as bypassing
the traditional approach with the CNN, thus streamlining the analysis process and rapidly

providing valuable insights into the properties of crystals without the needed for tedious trial

and error or expert opinion.
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Figure 1. Modified portfolio development pipeline for the representative stakeholder companies who
have internal or external materials research incorporated as part of the development process. Here,
the objective of data science is to integrate into the workflow and empower the throughput of the
experimental research such that an increase in high quality interpretations of the experimental
research will give feedback not only into the development and testing of the candidate materials but
also in enhancing the design of new products.
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Figure 2. The traditional path towards obtaining a detailed view of microscopic structure from X-ray
images is difficult and requires significant resources both from the standpoint of computing power and
necessary trials but also workflow must be managed by workers with a high level of expertise. The
idea of integrating AI into the workflow will streamline analysis by bypassing the traditional approach
with something more automated.
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Industry/ domain
Most domains that have workflows which intersect the field of materials science can benefit,

but primarily research and manufacture of semiconductors, energy storage,

pharmaceuticals, ceramics, agrochemicals and thin-film materials.

Stakeholders
Researchers, scientists, engineers, manufacturers, and quality control personnel who are

involved in the development, production, and quality control of high-tech materials and

devices. For example, they may have observed that adding traces of acetylsalicylic

anhydride to aspirin during its production has the highly profitable effect of increasing the

dissolution rate. They formulate a theory that has to do with the interaction of the impurity

incorporated with and compromising the overall crystal structure. They want to be able to

rapidly confirm that the theory is correct and thus it can be patented and exploited in their

assets when required.

Business question
How can we enhance the design space for profitable materials with desirable properties at

reduced manufacturing costs? This will ultimately lead to an increased throughput of

profitable products (e.g., materials that go into making lighter yet more powerful laptop

computers). This question drives our curiosity about understanding the details of material

structure. For example, perhaps we want to design a new alloy with improved strength,

durability, or conductivity. What details at the microscopic level can we exploit in a

cost-effective manner? Perhaps we can replace traces of boron with carbon. The notion of a

materials design space encompasses practical aspects of the materials analysis pipeline in

that we must have a high throughput analysis scheme in place to screen through large

quantities of experimental materials and want to enable non-SME (subject matter expert)

employees to perform the analogous high-quality interpretations pioneered by SMEs. This

also allows for a reduction in business overhead for SME's or the reallocation of SME

resources.
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Data question

There are several data-related questions that pertain to the problem statement of how to

streamline the analysis stage for X-ray images. Primarily, the main data question is: How can

we address the fact that there is a shortage of available X-ray image data for training that

has been successfully labelled by SMEs? Perhaps we can supplement or fortify the available

data.

Related to this question are the machine-learning engineering considerations. For instance,

we might consider that one powerful artificial general intelligence system (AGI) can be

trained to interpret any given X-ray image on a general scale, much like a generative

pre-trained transformer model (GPT). On the other hand, for a highly functional workflow,

CNNs may operate within a narrow AI scope, and multiple models need to be constructed on

a case-by-case basis. We must also consider how new interpreted data can be fed back into

the development pipeline.

Data

A few small samples of raw X-ray images from crystals of 1,5-Dichloro- 2,3-dinitrobenzene

were made available upon request. The crystals were the topic of a Ph.D thesis (see

references) and the image data that was received had been pre-processed. Further image

processing was performed so that the images were suitable for evaluating the performance

of CNN interpretation (described in next section).

To train the CNN a computational workflow for generating simulated X-ray image data was

established and described herein and in references provided. How this works begins with a

variable encoding in the form of a correlation space state vector which has a dimensionality

(D) referred to as the correlation function span (CFS), whereby D=(CFS2-1). This CFS vector

encoding is then forwarded as input to a statistical physics simulation engine which outputs a

2D-lattice grid (representation of the crystal structure) where each point on the lattice

represents a binary variable (1 or 0). A feature engineering step is then performed on the

grid known as a Fourier transformation (FT) to prepare data for learning by the CNN as a
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simulated form of X-ray image (Feature engineering involves creating new features or

representations from the existing data that can enhance the performance of machine

learning models).

The procedure thus far decodes the information about a possible crystal structure which was

originally encoded as the CFS vector (see figure 3 and references). To generate a
numerous variety of training data images as CNN inputs we use pseudo-random numbers to

generate the CFS vector encodings which map as outputs for the CNN. Using this approach

to 5000 simulated images, grids with corresponding encodings for three different output

dimensionalities (D=3, 8 and 15) with examples shown as figure 4 (the standard settings
were grid: 50x50, block averaging FT over 8 lots, lots size: 25x25). To evaluate the effect of

lattice simulation grid size and FT sampling we generated a further batch of 5000

image/encoding pairs with the increased resolution setting for the D=15 (grid: 96x96, block

averaging FT over 64 lots, lots size: 48x48). Inputs to the CNNs are all essentially 16-bit

grayscale images fixed at 64x64 pixels, however we stored the data in binary format or .h5

for convenience.

Figure 3. How the different CFS vector encodings are decoded by the physics simulation to produce
a 2D-lattice grid representation of the image. (rows top to bottom) depict the respective D=3,8 and 15.
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a)

b)

c)
Figure 4. Examples of different randomly generated structures and simulated X-ray images for (a)
CFS2, (b) CFS3 (c) CFS4.
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Data science process

Figure 5. Schematic representation of the Data science pipeline which depicts simulation of training
data and subsequent CNN regression to interpret X-ray images which is part of the original materials
analytics workflow. As the pipeline builds up interpreted materials data the knowledge stream feeds
back to improve the materials design process as well as the model training and interpretation cycles.

Figure 5. represents a schematic guide of the data science workflow. As depicted in the
figure, the CNN is being trained in the context of a supervised learning regression model. It
takes in images and outputs a CFS encoding. The encoding then provides a means of both
understanding physically meaningful parameters for the material as well as a crystal lattice
representation and comparative X-ray image generated via the same statistical physics
engine that were used to generate the training data. For this investigation we evaluated
several CNN which were trained (in the narrow AI sense) to output CFS of specific
dimensionality (explained in further detail in the modelling section of this report). The
computational workflow for generating the simulated X-ray images was setup both as jupyter
notebook and standalone python scripts. The physics engine and fourier transform
components require some external fortran routines and dependencies to run.
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Data analysis

Exploratory data analysis (EDA) was performed on the collection of encodings for each CFS

(CNN model output variables) in the form of histograms (figure 6). This EDA was for two

reasons, firstly to make sure that nothing went wrong during the generation process of the

simulated data, secondly, to get a look at the coverage of the variables within each

distribution and make sure they were reasonably symmetrical. The example shown in figure
6 shows this is indeed the case.

Figure 6. Density Histograms of the 8 CFS3 variables. each encoding (example shown in top left has
8 parameters)

The experimental images and the simulated image/encoding pairs were also subject to EDA

prior to any training. The reason for the latter was primarily as a control action to ensure that

the data was free of errors other than the expected statistical noise. In the case of the

observed data we want to make sure that the distribution of intensities over all pixels is

reasonably matched with the intensity distribution of the simulated data. The observed data

required Image reconstruction, data compression, smoothing, normalisation, re-scaling (with

optional: Top-hat filter, image restoration in-painting). The images and intensity histograms

before and after correction for two 64x64 images are shown in figure 7. The reasoning for
image corrections was to get the real X-ray images to have intensity distributions as close as

possible with the training data, since areas of strong intensity (Bragg peaks) might limit the

performance of the CNN. The image correction functions other than those of SKimage library

are all custom made and made available in a jupyter notebook for this project.
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a)

b)
Figure 7. EDA for observed X-ray images (a,b) with comparison before(top row) and after (bottom
row) corrections are made to the images. images are on the left column, with density histogram in the
middle and density histogram of log(Intensity) on the right.
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For EDA of the training images Figure 8 depicts the corresponding intensity histograms of a
single example image taken from the CFS3 training set. Figure 9 shows density histograms
for all pixel intensities of the CFS2 training set. The aim of the EDA is to make sure that the
current state of the data was suitable for training. Most of the simulated data is weak and we
made no further processing. it is difficult to tell at this stage if the modelling would benefit
from further preprocessing and feature engineering the training data. This is difficult to
discern because most fits with the current CNNs are already converged with very low loss
functions. The simulation and image decoding settings for the training data are an important
consideration of the data-science flow as depicted in figure 10. Further benchmarking at this
level will be required to improve the interpretation performance of the CNN.

Figure 8. Density histograms for (left) intensity and (right) log[intensity] of an example training image.
The log-normal distribution of intensity is less apparent.

Figure 9. Density histograms for all pixel intensities of the CFS2 training set. The log-normal
character of calculated intensities is apparent, however the distribution has some skewness and
kurtosis.
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Figure 10. Comparison of training images generated with different simulation sizes and different
averaging over the FT. The effect of these settings is noticeably different and very likely to affect the
quality of the CNN. Consideration of these settings are a component of the design aspect of the data
science process.

An important part of the EDA analysis is to determine the statistical error associated with the

simulation due to the inherent randomness of the statistical physics engine. To obtain some

measure of this we sampled 1000 image/encoding pairs at random from each training

dataset and then re-calculated the lattice structure, image and new-encoding from this

sample encoding. We were then able to quantitatively compare each image/encoding pair

using MSE and R2as metrics. The procedure is shown in figure 11 and is an important
consideration because it sets a limit on the quality of the decoding aspect (via randomised

statistical simulations) when using the CNN for X-ray image interpretation (by design) as a

distribution of metrics (shown as histograms) to which it is able to reproduce the same

simulated X-ray image. What this means is that sometimes given the same encoding, once

decoded the condition of R2<0 can occur between images but as we see in figure 11(b) this
error is in the tail end of a distribution which is centred mostly R2 > 0.5. This is also important
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to recognise because it places a limit on the degree to which an optimization algorithm can

be used to fit an image with the CFS vector encodings.

a)

b) c)
Figure 11. (a) Example of difference in decoded image and structure from a previously sampled
encoding and the intrinsic error due to inherent randomness of the statistical physics engine. Notice
how the structures are not the same but they look similar and in term of microscopic structure can be
classified as equivalent (much like different handwritings of the same number). The effect on X-ray
depiction is also similar. (b,c) This intrinsic error is best represented as distributions by histograming
the error metrics associated with comparison of pixel intensities.
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Modelling

There were two different CNN architectures investigated in this project which comprise
different sizes and settings (figure 12). The smaller architecture uses the default settings,
which means it has fewer layers and parameters. The larger architecture, on the other hand,
has skip connections and uses the He_normal weight initialization technique, which can help
to improve performance by mitigating the vanishing gradient problem often encountered in
deep neural networks. Skip connections allow information to be passed forward more easily,
helping to prevent the loss of data as it flows through the network.

To account for different CFS in the training data, different CNNs (irrespective of architecture)
are used for each CFS by way of the fact that each CNN takes as inputs images of 64x64
pixels, and outputs the encoding variables with dimensionalities of 3, 8, or 15. The output
encoding variables represent an underlying structure for the crystal. By using different CNNs
for each resolution, the analysis pipeline can be optimised to detect structure at different
scales, which may assist to improve the accuracy and reliability of the results. Overall, this
approach allows for an optional coarse- or fine-grained analysis of the possible X-ray
images.

To evaluate CNN performance, a set of performance metrics suitable for regression models
is used. This includes R2, MSE and MAE. To evaluate the performance on interpretation of
real data visual inspection of the final output is better suited. These metrics are applied to
both simulated and experimental X-ray images. All CNNs are trained with 100 epochs and
batch size of 32 using the ‘adam’ optimizer for weight adjustment with the default settings
available in keras.

The CNN training and cross validation results are summarised in Table 1. Figure 13 shows
training curves for the instances of small and large models using the totality of 10000 points
of CFS4 encoded training samples with a cross-validation split of 0.2. It is important to note
the residual plot (Residual=Ytest-Ypred) for the large model indicates significant bias in contrast
with the small model. Because of this we decided that the small model architecture as the
most suitable architecture at this stage for deployment as further testing will be necessary to
determine if the large model can supersede the performance of the smaller. It became more
obvious that the large model was unsuitable because it performed inadequately upon
attempts to interpret real X-ray data. The large model could be overfitting the data and might
only be necessary for fitting to very high dimension CFS vectors.
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Figure 12. Two different CNN architectures that were evaluated. (left) small (right) large
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a)

b)

Figure 13. Training and validation results for (a) small and (b) large CNN architectures trained using
the dataset of CFS4 image/encoding pairs losses (MSE). The middle scatterplot is for the actual vs.
predicted values. (right) Residual plots

Dim. Arch. Data
points

Loss
(MSE)

R2

3 small 5000 6.5E-4 0.997

8 small 5000 1.9E-3 0.986

15 small 5000 2.4E-3 0.974

15 small 10000 3.0E-4 0.997

15 large 10000 2.2E-3 0.976

Table 1. Summary results for fitting CNNs with the different datasets of image/encoding pairs the
third row and last row correspond with the results shown in figure 13.
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Outcomes
To further gather appreciation of the ability for the CNN models to interpret the real X-ray
images we initially make a more quantitative assessment using simulated hold-out test
images as the benchmark data. Later, it will become apparent why it is not possible at this
stage of development to make quantitative error metric based assessments based on the
outputs and interpretations for real X-ray images. Figure 14 depicts an example of
performance of different CNN for a simulated X-ray image generated with the CFS4
encoding (D:15) which is the highest resolution used in this investigation. The capacity
(metrics shown as table 2) to which the CNNs trained at lower resolution (D:3 and D:8) are
able to interpret the D:15 image is remarkable. This is in support that CNN trained on
simulated X-ray images should be able to provide some interpretation of a real image. It is
expected that real X-ray images have several orders of magnitude resolution by way of
structural information (after all, it is real data).

Figure 14. CNN performance with the simulated holdout data. As the resolution of CNN used to
interpret the data is increased we get a better reproduction of the input image via the decoding step.
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CNN output
Dimension

R2 (Images) MSE(Images)

3 -0.034 0.309

8 0.113 0.265

15 0.675 0.097

Table 2. Error metrics between the simulated CFS4 image input into the trained CNN and decoded
image which resulted from CNN interpretation. It is remarkable that details of the image with a
finer-grained structure correspond with a better fit and is an indication that the CNN using this
approach has some ability to generalise.

For evaluating the performance of the CNNs on real data, we demonstrate using the small
arch. CNN trained on CFS4 image and encoding pairs (see Table 1) for reasons discussed
earlier. The results for two real X-ray images are shown in Figure 15. It is remarkable how
CNN, which has no concept of what real data looks like, is able to output an encoding that
best describes its input. Once decoded, the simulated X-ray image resembles the observed
data, and the CNN has effectively made what appears to be a successful interpretation of
the real data. Especially for the image in the bottom row. It might have taken a lot of trial and
error to just manually adjust the encoding vector with the correct balance of variables in
order to get something that looked similar. Also, a global optimisation approach might have
encountered problems if it was not preconditioned close enough to the correct solution due
to getting stuck in local minima (of course, it is difficult to say exactly unless we try, and
studies from the available literature indicate that this is often the case). Certainly, the
encoding that is output from the CNN is a very good place to start prior to further parameter
optimisation or other refinement approaches based on physical modelling or molecular
simulation strategies. Further evaluation for other CNNs that were setup is made available in
the jupyter notebooks provided.
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Figure 15. CNN performance at interpreting real X-ray data. Subplot rows correspond to CNN
performance evaluation of two different X-ray images. Columns from left to right: observed X-ray
image; simulated microscopic material structure abstracted via decoding; simulated X-ray image from
the FT of the structure representation; CFS encoding directly output by the CNN as a matrix.

Implementation

We need to consider that the current CNNs evaluated were simplified and general in order to
successfully establish a proof-of-concept. We can make a preliminary deployment of these
CNNs online for public use and to receive further feedback. However, further consideration
will be required to fill gaps and integrate the approach as shown in the data-science flow
shown in Figure 5 into a complete end-to-end business-to-data-science-to-business
pipeline. It might be more important to perform a case study with a real industry compound
that has X-ray images available that have not been correctly interpreted by a subject matter
expert (SME). It must be demonstrated beyond reasonable doubt, perhaps requiring only a
simple modification of the current scheme, that the CNN strategy can be impactful.

Other factors must also be considered, such as: “What will be the computing resource
requirements for more sophisticated, higher-end use cases?" addressing implementation for
better resolution (larger CNNs, better training data). Actual use cases will require testing and
refinement with other known global optimisation methods incorporating molecular modelling
considerations. There are also questions of how variational AE, cGANS, and deep Q
learning might be implemented, and even consideration of if an AGI system can be
implemented.
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Data answer
The current model is successful at interpreting real observed data to a given resolution. It
was difficult to predict in advance how it would perform on the X-ray signals from the real
images based on only being trained to interpret simulated images. We have an answer
concerning the lack of labelled data and where to begin with training the model with
supplemented simulation data to improve the materials portfolio knowledge bucket. We have
a remarkable proof of concept to build on for real-world case studies. The data question is
solved, and we have a path forward for setting up an automated X-ray interpretation
CNN-based device, thus creating more labelled data that can add value for our stakeholders.

Business answer
Implementing the rapid analysis data-science pipeline will result in knowledge of the
structure details for specific desirable materials assets. We can begin to answer related
questions such as because of this structure the material can be manufactured in a more
profitable manner or monitored at a specified cost. Understanding how to enhance certain
materials properties will result in high demands for the related products and increase net
profits. Projected estimates are provided as Table 3.
The following assumptions are made:

● Instrument upkeep cost is unchanged because it is never fully utilised.
● Increasing X-ray image analysis by factor of 1 results in a materials design

enhancement of 0.5.
● Cost of simulated data is negligible wrt. rest of the portfolio.
● Tradeoff. less SME and more non-SME staff.

Resource Current X-ray analysis pipeline CNN enabled X-ray analysis pipeline

Units/year
Cost/profit
estimate Total Units/year

Cost/profit
estimate Total

Materials Design
Portfolio 100 $2,000,000

$200,000,000
150 $2,000,000

$300,000,000

Raw X-ray Data
collection 40 -$20,000

-$800,000
200 -$20,000

-$4,000,000

Simulated Data
collection 0 $0

$0
20000 $0

$2

X-ray Image
analysis 5 $50,000

$250,000
105 $50,000

$5,250,000

SME workers 5 -$200,000 -$1,000,000 2 -$200,000 -$400,000

non-SME
workers 10 -$60,000

-$600,000
15 -$60,000

-$900,000

Net Income $197,850,000 $299,950,002

Table 3. Business case overview and estimated net profit.
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Response to stakeholders
We have confirmed proof of concept in that CNN is capable of recognizing features of the
images and output encodings that can simulate the structure.

End-to-end solution
A full end-to-end business→data science→business workflow is shown as Figure 16.

Figure 16. End-to-End Business Pipeline and Integrated Data Science Flow.
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