%load_ext autoreload
%autoreload 2
import re
import os
import sys
import shutil
from shutil import copyfile, copy2
from shutil import move
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import seaborn as sns
from scipy import stats
# Cause plots to be displayed in the notebook:
%matplotlib inline
import subprocess
from matplotlib import cm
from latt2D_modules import calc_diffuse_cfs4,calc_diffuse_cfs4_big
from latt2D_modules import get_occ_map, get_2D_occ_map_from_seq,store_occ_map_as_seq
from latt2D_modules import plot_occ_map,read_bin,output_16bit_pgm
from CFS_CNN_models import construct_new_small_cfs_model
from CFS_CNN_models import construct_new_medium_cfs_model
from CFS_CNN_models import construct_new_large_cfs_model
import time
from aux_functions import model_evaluate_and_plot
from aux_functions import check_cfs_dist, prep_img_data
from aux_functions import regenerate_test_cfs_vector_and_compare
from aux_functions import regenerate_pred_cfs_vector_and_compare
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from keras.metrics import MeanSquaredError, MeanAbsoluteError, MeanAbsolutePercentageError, RootMeanSquaredError
from sklearn.metrics import r2_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
import h5py
from keras.callbacks import ModelCheckpoint
# read in all the correlation datum
df_cfs4=pd.read_csv('output_correlations_cfs4_5000.csv')
df_cfs4=df_cfs4.drop('Unnamed: 0',axis=1)
df_cfs4.reset_index(inplace=True,drop=True)
df_cfs4.head()
00 | 01 | 02 | 03 | 10 | 11 | 12 | 13 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.999997 | -0.128003 | 0.379197 | 0.369597 | 0.070397 | 0.159997 | -0.379203 | 0.454397 | -0.020803 | -0.204803 | -0.294403 | -0.153603 | -0.084803 | 0.454397 | -0.144003 | 0.283197 |
1 | 0.999690 | -0.285110 | -0.334710 | 0.180490 | -0.008310 | 0.201290 | -0.374710 | 0.236490 | -0.502710 | -0.085110 | 0.274890 | 0.082890 | 0.178890 | -0.173110 | 0.294090 | -0.257910 |
2 | 0.998335 | 0.036735 | 0.239935 | 0.411135 | -0.177665 | -0.011265 | -0.044865 | 0.070335 | 0.311935 | 0.126335 | 0.486335 | -0.091265 | -0.228865 | -0.329665 | -0.230465 | 0.041535 |
3 | 0.999124 | -0.210476 | 0.171924 | 0.219924 | 0.186324 | -0.164076 | -0.229676 | 0.264724 | 0.072724 | -0.615276 | 0.187924 | -0.255276 | -0.317676 | -0.138476 | -0.084076 | 0.119124 |
4 | 0.999948 | -0.216052 | -0.171252 | 0.271948 | -0.096052 | 0.156748 | 0.243148 | -0.564852 | 0.235148 | -0.116852 | 0.119948 | -0.145652 | -0.528052 | 0.398348 | -0.120052 | -0.393652 |
# read in all the correlation datum
df_cfs4_big=pd.read_csv('output_correlations_cfs4_big_5000.csv')
df_cfs4_big=df_cfs4_big.drop('Unnamed: 0',axis=1)
df_cfs4_big.reset_index(inplace=True,drop=True)
df_cfs4_big.head()
00 | 01 | 02 | 03 | 10 | 11 | 12 | 13 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.999873 | 0.183466 | 0.531991 | -0.200214 | -0.187193 | 0.214716 | -0.028773 | 0.385723 | 0.615324 | 0.082338 | 0.559335 | -0.097784 | -0.028773 | 0.275046 | 0.072355 | 0.429126 |
1 | 0.999936 | -0.334266 | -0.017860 | -0.224891 | -0.367686 | 0.450022 | -0.191471 | -0.267860 | 0.161394 | 0.044206 | 0.010786 | 0.154883 | -0.287825 | -0.061262 | 0.525977 | -0.370290 |
2 | 0.999706 | 0.007519 | -0.126162 | 0.190244 | 0.247970 | 0.301789 | 0.196755 | -0.091006 | -0.324079 | -0.009409 | 0.135557 | -0.223384 | -0.442134 | -0.364009 | 0.224532 | -0.374426 |
3 | 0.999958 | 0.248656 | -0.131553 | 0.054211 | 0.530340 | 0.441798 | 0.127128 | -0.045615 | 0.289020 | 0.436590 | 0.053343 | -0.107681 | 0.160114 | 0.617145 | 0.070270 | -0.347699 |
4 | 0.999863 | -0.031387 | -0.090415 | 0.228161 | 0.316269 | -0.155085 | 0.478595 | 0.288491 | 0.269394 | 0.208630 | 0.442571 | -0.106040 | 0.679984 | -0.144235 | 0.025904 | 0.257241 |
y1=df_cfs4.iloc[:,1:16].values
y2=df_cfs4_big.iloc[:,1:16].values
y1[0]
array([-0.128003, 0.379197, 0.369597, 0.070397, 0.159997, -0.379203, 0.454397, -0.020803, -0.204803, -0.294403, -0.153603, -0.084803, 0.454397, -0.144003, 0.283197])
my_cols=df_cfs4.columns.values
my_cols
array(['00', '01', '02', '03', '10', '11', '12', '13', '20', '21', '22', '23', '30', '31', '32', '33'], dtype=object)
palette = sns.color_palette("Set2", n_colors=16)
rows,cols =4,4
fig, axes = plt.subplots(rows, cols, figsize=(15,6))
k=0
for i in range(rows):
for j in range(cols):
mycol=my_cols[k]
sns.histplot(ax=axes[i,j], data=df_cfs4_big, x=mycol, bins=50,color=palette[k] , kde=True, stat='density', label='%s'%mycol )
axes[i,j].set_xlabel(None)
axes[i,j].set_ylabel(None)
axes[i,j].set_xlim([-1,1])
axes[i,j].legend(loc=1)
k+=1
if k == len(my_cols): break
fig.suptitle("Density distributions of the randomly generated target CFS4 variables used for CNN fit.", fontsize=12, y=0.95)
plt.subplots_adjust(left=0.1,
bottom=0.1,
right=0.9,
top=0.9,
wspace=0.3,
hspace=0.3)
axes[0, 0].remove() # remove unused subplot
# plt.legend()
# Open the HDF5 file in read-only mode
with h5py.File('cfs4_image_dataset_5000.h5', 'r') as f:
# Get a list of dataset names in the HDF5 file
dataset_names = list(f.keys())
# Print the names of all datasets
for name in dataset_names:
print(name)
dset=f[dataset_names[0]]
X1=dset[:]
cfs4_img_data
# Open the HDF5 file in read-only mode
with h5py.File('cfs4_big_image_dataset_5000.h5', 'r') as f:
# Get a list of dataset names in the HDF5 file
dataset_names = list(f.keys())
# Print the names of all datasets
for name in dataset_names:
print(name)
dset=f[dataset_names[0]]
X2=dset[:]
cfs4_big_img_data
# Open the HDF5 file in read-only mode
with h5py.File('cfs4_big_bin_1.h5', 'r') as f:
# Get a list of dataset names in the HDF5 file
dataset_names = list(f.keys())
# Print the names of all datasets
for name in dataset_names:
print(name)
dset=f[dataset_names[0]]
X3a=dset[:]
cfs4_big_bin_1
cfs4_big_bin_1
# read in the correlation datum
df_cfs4b3a=pd.read_csv('cfs4_big_corr_out_1.csv')
df_cfs4b3a=df_cfs4b3a.drop('Unnamed: 0',axis=1)
df_cfs4b3a.reset_index(inplace=True,drop=True)
df_cfs4b3a.head()
00 | 01 | 02 | 03 | 10 | 11 | 12 | 13 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.999963 | -0.194047 | 0.068539 | -0.276947 | -0.054724 | 0.128001 | 0.201352 | 0.152307 | 0.249963 | 0.212203 | -0.180158 | -0.223995 | -0.130245 | 0.503869 | -0.067311 | 0.144928 |
1 | 0.999635 | -0.185695 | 0.109010 | -0.193941 | 0.268299 | 0.111180 | -0.179184 | -0.441771 | 0.321250 | 0.242257 | 0.343819 | -0.366684 | -0.203490 | -0.072847 | 0.324288 | -0.449583 |
2 | 0.999994 | -0.059468 | -0.047315 | -0.403217 | 0.317703 | -0.270839 | -0.026915 | -0.567280 | -0.298183 | -0.128912 | -0.287332 | -0.198790 | -0.332037 | 0.055116 | -0.503044 | 0.397998 |
3 | 0.999999 | -0.035591 | -0.029949 | 0.048610 | -0.033421 | 0.157985 | -0.015192 | -0.733508 | 0.664495 | 0.013020 | 0.234808 | -0.000001 | 0.099825 | 0.266926 | -0.082032 | -0.508248 |
4 | 0.999852 | -0.174627 | 0.422161 | 0.034141 | 0.417387 | -0.653360 | 0.372248 | -0.203707 | -0.070460 | -0.676797 | 0.380929 | -0.600408 | 0.142213 | -0.163776 | 0.468602 | -0.566120 |
y3a=df_cfs4b3a.iloc[:,1:16].values
check_cfs_dist(df_cfs4b3a,cfs=4)
print(np.shape(y1))
print(np.shape(y2))
print(np.shape(X1))
print(np.shape(X2))
(5000, 15) (5000, 15) (5000, 64, 64) (5000, 64, 64)
X12=np.r_[X1,X2]
y12=np.r_[y1,y2]
print(np.shape(y12))
print(np.shape(X12))
(10000, 15) (10000, 64, 64)
X_train12, X_test12, y_train12, y_test12 = train_test_split(X12, y12, random_state=42,test_size=0.2)
X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, random_state=42,test_size=0.2)
X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2, random_state=42,test_size=0.2)
X_train12=np.expand_dims(X_train12, -1)
X_test12=np.expand_dims(X_test12, -1)
X_train1=np.expand_dims(X_train1, -1)
X_test1=np.expand_dims(X_test1, -1)
X_train2=np.expand_dims(X_train2, -1)
X_test2=np.expand_dims(X_test2, -1)
print(np.shape(X_train1),type(X_train1))
print(np.shape(X_test1),type(X_test1))
print(np.shape(y_train1),type(y_train1))
print(np.shape(y_test1),type(y_test1))
import plotly.express as px
num_img_to_sample = 10
random_img = np.random.choice(X1.shape[0], size=num_img_to_sample, replace=False)
sampled_img = X1[random_img]
fig = px.imshow(sampled_img, binary_string=True, animation_frame=0, zmax=4)
fig.show()
import plotly.express as px
num_img_to_sample = 10
random_img = np.random.choice(X2.shape[0], size=num_img_to_sample, replace=False)
sampled_img = X2[random_img]
fig = px.imshow(sampled_img, binary_string=True, animation_frame=0, zmax=4)
fig.show()
ax=plt.hist(np.log(X1.flatten()),bins=1000,log=False,density=True)
print(np.mean(X1.flatten()))
print(np.median(X1.flatten()))
print(np.max(X1.flatten()))
print(np.min(X1.flatten()))
0.25179419209412757 0.08077490702271461 42.968379974365234 0.0021034684032201767
ax=plt.hist(np.log(X2.flatten()),bins=1000,log=False,density=True)
print(np.mean(X2.flatten()))
print(np.median(X2.flatten()))
print(np.max(X2.flatten()))
print(np.min(X2.flatten()))
0.25278253299105474 0.06955553218722343 54.31019592285156 0.005550937261432409
ax=plt.hist(np.log(X3a.flatten()),bins=1000,log=False,density=True)
print(np.mean(X3a.flatten()))
print(np.median(X3a.flatten()))
print(np.max(X3a.flatten()))
print(np.min(X3a.flatten()))
0.2529564511049806 0.06906754150986671 46.27295684814453 0.005566991399973631
# original model
input_shape = (64, 64, 1)
model_sm = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu",name='conv1'),
layers.BatchNormalization(name='norm1'),
layers.MaxPooling2D(pool_size=(2, 2),name='maxpool1'),
layers.Dropout(0.2,name='drop1'),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu",name='conv2'),
layers.BatchNormalization(name='norm2'),
layers.MaxPooling2D(pool_size=(2, 2),name='maxpool2'),
layers.Flatten(name='flatten1'),
layers.Dropout(0.5,name='drop2'),
layers.Dense(15, activation="linear",name='dense_out'),
],name='seq_CNN_cfs4'
)
model_sm.summary()
Model: "seq_CNN_cfs4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv1 (Conv2D) (None, 62, 62, 32) 320 norm1 (BatchNormalization) (None, 62, 62, 32) 128 maxpool1 (MaxPooling2D) (None, 31, 31, 32) 0 drop1 (Dropout) (None, 31, 31, 32) 0 conv2 (Conv2D) (None, 29, 29, 64) 18496 norm2 (BatchNormalization) (None, 29, 29, 64) 256 maxpool2 (MaxPooling2D) (None, 14, 14, 64) 0 flatten1 (Flatten) (None, 12544) 0 drop2 (Dropout) (None, 12544) 0 dense_out (Dense) (None, 15) 188175 ================================================================= Total params: 207,375 Trainable params: 207,183 Non-trainable params: 192 _________________________________________________________________
from keras.initializers import HeNormal as he_normal
inputs = keras.Input(shape=(64, 64, 1))
#First block with downsampling
x1 = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(inputs)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x1) # Downsample with stride=2
x1 = layers.BatchNormalization()(x1)
x1 = layers.MaxPooling2D(pool_size=(2, 2))(x1)
x1 = layers.Dropout(0.2)(x1)
#Second block with skip connection
x2 = layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(x1)
x2 = layers.BatchNormalization()(x2)
x2 = layers.MaxPooling2D(pool_size=(2, 2))(x2)
x2 = layers.Dropout(0.25)(x2)
x2 = layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(x2)
x2 = layers.BatchNormalization()(x2)
x1_downsampled = layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x1) #Downsample with stride=2
x2 = layers.Add()([x2, x1_downsampled]) #Add skip connection
x2 = layers.Activation('relu')(x2)
x2 = layers.Dropout(0.25)(x2)
# route to Dense Block
x3 = layers.Flatten()(x2)
x3 = layers.Dense(units=128, activation="relu", kernel_initializer=he_normal())(x3)
x3 = layers.BatchNormalization()(x3)
x3 = layers.Dropout(0.5)(x3)
x3 = layers.Dense(units=15, activation='linear', kernel_initializer=he_normal())(x3)
model_md = keras.Model(inputs=inputs, outputs=x3)
model_md.summary()
Model: "model_2" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_6 (InputLayer) [(None, 64, 64, 1)] 0 [] conv2d_33 (Conv2D) (None, 64, 64, 32) 320 ['input_6[0][0]'] batch_normalization_27 (BatchN (None, 64, 64, 32) 128 ['conv2d_33[0][0]'] ormalization) conv2d_34 (Conv2D) (None, 32, 32, 64) 18496 ['batch_normalization_27[0][0]'] batch_normalization_28 (BatchN (None, 32, 32, 64) 256 ['conv2d_34[0][0]'] ormalization) max_pooling2d_9 (MaxPooling2D) (None, 16, 16, 64) 0 ['batch_normalization_28[0][0]'] dropout_24 (Dropout) (None, 16, 16, 64) 0 ['max_pooling2d_9[0][0]'] conv2d_35 (Conv2D) (None, 16, 16, 64) 36928 ['dropout_24[0][0]'] batch_normalization_29 (BatchN (None, 16, 16, 64) 256 ['conv2d_35[0][0]'] ormalization) max_pooling2d_10 (MaxPooling2D (None, 8, 8, 64) 0 ['batch_normalization_29[0][0]'] ) dropout_25 (Dropout) (None, 8, 8, 64) 0 ['max_pooling2d_10[0][0]'] conv2d_36 (Conv2D) (None, 8, 8, 128) 73856 ['dropout_25[0][0]'] batch_normalization_30 (BatchN (None, 8, 8, 128) 512 ['conv2d_36[0][0]'] ormalization) conv2d_37 (Conv2D) (None, 8, 8, 128) 73856 ['dropout_24[0][0]'] add_9 (Add) (None, 8, 8, 128) 0 ['batch_normalization_30[0][0]', 'conv2d_37[0][0]'] activation_9 (Activation) (None, 8, 8, 128) 0 ['add_9[0][0]'] dropout_26 (Dropout) (None, 8, 8, 128) 0 ['activation_9[0][0]'] flatten_3 (Flatten) (None, 8192) 0 ['dropout_26[0][0]'] dense_5 (Dense) (None, 128) 1048704 ['flatten_3[0][0]'] batch_normalization_31 (BatchN (None, 128) 512 ['dense_5[0][0]'] ormalization) dropout_27 (Dropout) (None, 128) 0 ['batch_normalization_31[0][0]'] dense_6 (Dense) (None, 15) 1935 ['dropout_27[0][0]'] ================================================================================================== Total params: 1,255,759 Trainable params: 1,254,927 Non-trainable params: 832 __________________________________________________________________________________________________
from keras.initializers import HeNormal as he_normal
inputs = keras.Input(shape=(64, 64, 1))
#First block with downsampling
x1 = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(inputs)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x1) # Downsample with stride=2
x1 = layers.BatchNormalization()(x1)
x1 = layers.Dropout(0.25)(x1)
#Second block with skip connection
x2 = layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(x1)
x2 = layers.BatchNormalization()(x2)
x2 = layers.MaxPooling2D(pool_size=(2, 2))(x2)
x2 = layers.Dropout(0.25)(x2)
x2 = layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal())(x2)
x2 = layers.BatchNormalization()(x2)
x1_downsampled = layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x1) #Downsample with stride=2
x2 = layers.Add()([x2, x1_downsampled]) #Add skip connection
x2 = layers.Activation('relu')(x2)
x2 = layers.Dropout(0.25)(x2)
#Third block with skip connection
x3 = layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu", padding="same", kernel_initializer=he_normal())(x2)
x3 = layers.BatchNormalization()(x3)
x3 = layers.MaxPooling2D(pool_size=(2, 2))(x3)
x3 = layers.Dropout(0.25)(x3)
x3 = layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu", padding="same", kernel_initializer=he_normal())(x3)
x3 = layers.BatchNormalization()(x3)
x2_downsampled = layers.Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x2) #Downsample with stride=2
x3 = layers.Add()([x3, x2_downsampled]) #Add skip connection
x3 = layers.Activation('relu')(x3)
x3 = layers.Dropout(0.25)(x3)
#Fourth block with skip connection and additional dropout
x4 = layers.Conv2D(filters=512, kernel_size=(3, 3), activation="relu", padding="same", kernel_initializer=he_normal())(x3)
x4 = layers.BatchNormalization()(x4)
x4 = layers.MaxPooling2D(pool_size=(2, 2))(x4)
x4 = layers.Dropout(0.25)(x4)
x4 = layers.Conv2D(filters=512, kernel_size=(3, 3), activation="relu", padding="same", kernel_initializer=he_normal())(x4)
x4 = layers.BatchNormalization()(x4)
x3_downsampled = layers.Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', kernel_initializer=he_normal(), strides=2)(x3) #Downsample with stride=2
x4 = layers.Add()([x4, x3_downsampled]) #Add skip connection
x4 = layers.Activation('relu')(x4)
x4 = layers.Dropout(0.5)(x4)
x4 = layers.Flatten()(x4)
x4 = layers.Dense(units=128, activation="relu", kernel_initializer=he_normal())(x4)
x4 = layers.BatchNormalization()(x4)
x4 = layers.Dropout(0.5)(x4)
x4 = layers.Dense(units=15, activation='linear', kernel_initializer=he_normal())(x4)
model_lg = keras.Model(inputs=inputs, outputs=x4)
model_lg.summary()
Model: "model_3" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_7 (InputLayer) [(None, 64, 64, 1)] 0 [] conv2d_38 (Conv2D) (None, 64, 64, 32) 320 ['input_7[0][0]'] batch_normalization_32 (BatchN (None, 64, 64, 32) 128 ['conv2d_38[0][0]'] ormalization) conv2d_39 (Conv2D) (None, 32, 32, 64) 18496 ['batch_normalization_32[0][0]'] batch_normalization_33 (BatchN (None, 32, 32, 64) 256 ['conv2d_39[0][0]'] ormalization) dropout_28 (Dropout) (None, 32, 32, 64) 0 ['batch_normalization_33[0][0]'] conv2d_40 (Conv2D) (None, 32, 32, 64) 36928 ['dropout_28[0][0]'] batch_normalization_34 (BatchN (None, 32, 32, 64) 256 ['conv2d_40[0][0]'] ormalization) max_pooling2d_11 (MaxPooling2D (None, 16, 16, 64) 0 ['batch_normalization_34[0][0]'] ) dropout_29 (Dropout) (None, 16, 16, 64) 0 ['max_pooling2d_11[0][0]'] conv2d_41 (Conv2D) (None, 16, 16, 128) 73856 ['dropout_29[0][0]'] batch_normalization_35 (BatchN (None, 16, 16, 128) 512 ['conv2d_41[0][0]'] ormalization) conv2d_42 (Conv2D) (None, 16, 16, 128) 73856 ['dropout_28[0][0]'] add_10 (Add) (None, 16, 16, 128) 0 ['batch_normalization_35[0][0]', 'conv2d_42[0][0]'] activation_10 (Activation) (None, 16, 16, 128) 0 ['add_10[0][0]'] dropout_30 (Dropout) (None, 16, 16, 128) 0 ['activation_10[0][0]'] conv2d_43 (Conv2D) (None, 16, 16, 256) 295168 ['dropout_30[0][0]'] batch_normalization_36 (BatchN (None, 16, 16, 256) 1024 ['conv2d_43[0][0]'] ormalization) max_pooling2d_12 (MaxPooling2D (None, 8, 8, 256) 0 ['batch_normalization_36[0][0]'] ) dropout_31 (Dropout) (None, 8, 8, 256) 0 ['max_pooling2d_12[0][0]'] conv2d_44 (Conv2D) (None, 8, 8, 256) 590080 ['dropout_31[0][0]'] batch_normalization_37 (BatchN (None, 8, 8, 256) 1024 ['conv2d_44[0][0]'] ormalization) conv2d_45 (Conv2D) (None, 8, 8, 256) 295168 ['dropout_30[0][0]'] add_11 (Add) (None, 8, 8, 256) 0 ['batch_normalization_37[0][0]', 'conv2d_45[0][0]'] activation_11 (Activation) (None, 8, 8, 256) 0 ['add_11[0][0]'] dropout_32 (Dropout) (None, 8, 8, 256) 0 ['activation_11[0][0]'] conv2d_46 (Conv2D) (None, 8, 8, 512) 1180160 ['dropout_32[0][0]'] batch_normalization_38 (BatchN (None, 8, 8, 512) 2048 ['conv2d_46[0][0]'] ormalization) max_pooling2d_13 (MaxPooling2D (None, 4, 4, 512) 0 ['batch_normalization_38[0][0]'] ) dropout_33 (Dropout) (None, 4, 4, 512) 0 ['max_pooling2d_13[0][0]'] conv2d_47 (Conv2D) (None, 4, 4, 512) 2359808 ['dropout_33[0][0]'] batch_normalization_39 (BatchN (None, 4, 4, 512) 2048 ['conv2d_47[0][0]'] ormalization) conv2d_48 (Conv2D) (None, 4, 4, 512) 1180160 ['dropout_32[0][0]'] add_12 (Add) (None, 4, 4, 512) 0 ['batch_normalization_39[0][0]', 'conv2d_48[0][0]'] activation_12 (Activation) (None, 4, 4, 512) 0 ['add_12[0][0]'] dropout_34 (Dropout) (None, 4, 4, 512) 0 ['activation_12[0][0]'] flatten_4 (Flatten) (None, 8192) 0 ['dropout_34[0][0]'] dense_7 (Dense) (None, 128) 1048704 ['flatten_4[0][0]'] batch_normalization_40 (BatchN (None, 128) 512 ['dense_7[0][0]'] ormalization) dropout_35 (Dropout) (None, 128) 0 ['batch_normalization_40[0][0]'] dense_8 (Dense) (None, 15) 1935 ['dropout_35[0][0]'] ================================================================================================== Total params: 7,162,447 Trainable params: 7,158,543 Non-trainable params: 3,904 __________________________________________________________________________________________________
model_sm1=construct_new_small_cfs_model(15)
2023-05-13 09:29:31.205011: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-13 09:29:31.206918: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
batch_size = 32
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_small_model_X1.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
model_sm1.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
history_sm1 =model_sm1.fit(X_train1,y_train1,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 100/100 [==============================] - ETA: 0s - loss: 8.6530 - mean_squared_error: 8.6530 - mean_absolute_error: 2.1819 Epoch 1: val_loss improved from inf to 0.24077, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 90ms/step - loss: 8.6530 - mean_squared_error: 8.6530 - mean_absolute_error: 2.1819 - val_loss: 0.2408 - val_mean_squared_error: 0.2408 - val_mean_absolute_error: 0.3854 Epoch 2/100 100/100 [==============================] - ETA: 0s - loss: 4.9110 - mean_squared_error: 4.9110 - mean_absolute_error: 1.6785 Epoch 2: val_loss did not improve from 0.24077 100/100 [==============================] - 6s 63ms/step - loss: 4.9110 - mean_squared_error: 4.9110 - mean_absolute_error: 1.6785 - val_loss: 0.2979 - val_mean_squared_error: 0.2979 - val_mean_absolute_error: 0.4184 Epoch 3/100 100/100 [==============================] - ETA: 0s - loss: 3.2781 - mean_squared_error: 3.2781 - mean_absolute_error: 1.3747 Epoch 3: val_loss did not improve from 0.24077 100/100 [==============================] - 7s 70ms/step - loss: 3.2781 - mean_squared_error: 3.2781 - mean_absolute_error: 1.3747 - val_loss: 0.3143 - val_mean_squared_error: 0.3143 - val_mean_absolute_error: 0.4287 Epoch 4/100 100/100 [==============================] - ETA: 0s - loss: 2.3984 - mean_squared_error: 2.3984 - mean_absolute_error: 1.1835 Epoch 4: val_loss did not improve from 0.24077 100/100 [==============================] - 7s 75ms/step - loss: 2.3984 - mean_squared_error: 2.3984 - mean_absolute_error: 1.1835 - val_loss: 0.4282 - val_mean_squared_error: 0.4282 - val_mean_absolute_error: 0.4974 Epoch 5/100 100/100 [==============================] - ETA: 0s - loss: 1.7362 - mean_squared_error: 1.7362 - mean_absolute_error: 1.0050 Epoch 5: val_loss did not improve from 0.24077 100/100 [==============================] - 7s 73ms/step - loss: 1.7362 - mean_squared_error: 1.7362 - mean_absolute_error: 1.0050 - val_loss: 0.2953 - val_mean_squared_error: 0.2953 - val_mean_absolute_error: 0.4196 Epoch 6/100 100/100 [==============================] - ETA: 0s - loss: 1.3346 - mean_squared_error: 1.3346 - mean_absolute_error: 0.8827 Epoch 6: val_loss did not improve from 0.24077 100/100 [==============================] - 7s 67ms/step - loss: 1.3346 - mean_squared_error: 1.3346 - mean_absolute_error: 0.8827 - val_loss: 0.3027 - val_mean_squared_error: 0.3027 - val_mean_absolute_error: 0.4252 Epoch 7/100 100/100 [==============================] - ETA: 0s - loss: 1.0121 - mean_squared_error: 1.0121 - mean_absolute_error: 0.7715 Epoch 7: val_loss improved from 0.24077 to 0.22212, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 65ms/step - loss: 1.0121 - mean_squared_error: 1.0121 - mean_absolute_error: 0.7715 - val_loss: 0.2221 - val_mean_squared_error: 0.2221 - val_mean_absolute_error: 0.3655 Epoch 8/100 99/100 [============================>.] - ETA: 0s - loss: 0.7944 - mean_squared_error: 0.7944 - mean_absolute_error: 0.6839 Epoch 8: val_loss improved from 0.22212 to 0.16935, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 62ms/step - loss: 0.7927 - mean_squared_error: 0.7927 - mean_absolute_error: 0.6830 - val_loss: 0.1693 - val_mean_squared_error: 0.1693 - val_mean_absolute_error: 0.3204 Epoch 9/100 100/100 [==============================] - ETA: 0s - loss: 0.6305 - mean_squared_error: 0.6305 - mean_absolute_error: 0.6082 Epoch 9: val_loss improved from 0.16935 to 0.15249, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 64ms/step - loss: 0.6305 - mean_squared_error: 0.6305 - mean_absolute_error: 0.6082 - val_loss: 0.1525 - val_mean_squared_error: 0.1525 - val_mean_absolute_error: 0.2978 Epoch 10/100 100/100 [==============================] - ETA: 0s - loss: 0.5008 - mean_squared_error: 0.5008 - mean_absolute_error: 0.5433 Epoch 10: val_loss improved from 0.15249 to 0.11806, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 73ms/step - loss: 0.5008 - mean_squared_error: 0.5008 - mean_absolute_error: 0.5433 - val_loss: 0.1181 - val_mean_squared_error: 0.1181 - val_mean_absolute_error: 0.2579 Epoch 11/100 100/100 [==============================] - ETA: 0s - loss: 0.4101 - mean_squared_error: 0.4101 - mean_absolute_error: 0.4937 Epoch 11: val_loss improved from 0.11806 to 0.09251, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 74ms/step - loss: 0.4101 - mean_squared_error: 0.4101 - mean_absolute_error: 0.4937 - val_loss: 0.0925 - val_mean_squared_error: 0.0925 - val_mean_absolute_error: 0.2373 Epoch 12/100 100/100 [==============================] - ETA: 0s - loss: 0.3332 - mean_squared_error: 0.3332 - mean_absolute_error: 0.4442 Epoch 12: val_loss improved from 0.09251 to 0.08069, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 75ms/step - loss: 0.3332 - mean_squared_error: 0.3332 - mean_absolute_error: 0.4442 - val_loss: 0.0807 - val_mean_squared_error: 0.0807 - val_mean_absolute_error: 0.2167 Epoch 13/100 100/100 [==============================] - ETA: 0s - loss: 0.2843 - mean_squared_error: 0.2843 - mean_absolute_error: 0.4109 Epoch 13: val_loss improved from 0.08069 to 0.06803, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 90ms/step - loss: 0.2843 - mean_squared_error: 0.2843 - mean_absolute_error: 0.4109 - val_loss: 0.0680 - val_mean_squared_error: 0.0680 - val_mean_absolute_error: 0.2013 Epoch 14/100 100/100 [==============================] - ETA: 0s - loss: 0.2299 - mean_squared_error: 0.2299 - mean_absolute_error: 0.3695 Epoch 14: val_loss improved from 0.06803 to 0.05721, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 81ms/step - loss: 0.2299 - mean_squared_error: 0.2299 - mean_absolute_error: 0.3695 - val_loss: 0.0572 - val_mean_squared_error: 0.0572 - val_mean_absolute_error: 0.1824 Epoch 15/100 100/100 [==============================] - ETA: 0s - loss: 0.1886 - mean_squared_error: 0.1886 - mean_absolute_error: 0.3354 Epoch 15: val_loss improved from 0.05721 to 0.03693, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 71ms/step - loss: 0.1886 - mean_squared_error: 0.1886 - mean_absolute_error: 0.3354 - val_loss: 0.0369 - val_mean_squared_error: 0.0369 - val_mean_absolute_error: 0.1471 Epoch 16/100 100/100 [==============================] - ETA: 0s - loss: 0.1605 - mean_squared_error: 0.1605 - mean_absolute_error: 0.3089 Epoch 16: val_loss improved from 0.03693 to 0.03452, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 73ms/step - loss: 0.1605 - mean_squared_error: 0.1605 - mean_absolute_error: 0.3089 - val_loss: 0.0345 - val_mean_squared_error: 0.0345 - val_mean_absolute_error: 0.1417 Epoch 17/100 100/100 [==============================] - ETA: 0s - loss: 0.1385 - mean_squared_error: 0.1385 - mean_absolute_error: 0.2863 Epoch 17: val_loss improved from 0.03452 to 0.03225, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 66ms/step - loss: 0.1385 - mean_squared_error: 0.1385 - mean_absolute_error: 0.2863 - val_loss: 0.0323 - val_mean_squared_error: 0.0323 - val_mean_absolute_error: 0.1380 Epoch 18/100 100/100 [==============================] - ETA: 0s - loss: 0.1162 - mean_squared_error: 0.1162 - mean_absolute_error: 0.2625 Epoch 18: val_loss improved from 0.03225 to 0.02695, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 83ms/step - loss: 0.1162 - mean_squared_error: 0.1162 - mean_absolute_error: 0.2625 - val_loss: 0.0270 - val_mean_squared_error: 0.0270 - val_mean_absolute_error: 0.1269 Epoch 19/100 100/100 [==============================] - ETA: 0s - loss: 0.1016 - mean_squared_error: 0.1016 - mean_absolute_error: 0.2450 Epoch 19: val_loss improved from 0.02695 to 0.02396, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 67ms/step - loss: 0.1016 - mean_squared_error: 0.1016 - mean_absolute_error: 0.2450 - val_loss: 0.0240 - val_mean_squared_error: 0.0240 - val_mean_absolute_error: 0.1209 Epoch 20/100 100/100 [==============================] - ETA: 0s - loss: 0.0862 - mean_squared_error: 0.0862 - mean_absolute_error: 0.2264 Epoch 20: val_loss improved from 0.02396 to 0.02165, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 68ms/step - loss: 0.0862 - mean_squared_error: 0.0862 - mean_absolute_error: 0.2264 - val_loss: 0.0216 - val_mean_squared_error: 0.0216 - val_mean_absolute_error: 0.1146 Epoch 21/100 100/100 [==============================] - ETA: 0s - loss: 0.0744 - mean_squared_error: 0.0744 - mean_absolute_error: 0.2108 Epoch 21: val_loss improved from 0.02165 to 0.02095, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 5s 54ms/step - loss: 0.0744 - mean_squared_error: 0.0744 - mean_absolute_error: 0.2108 - val_loss: 0.0210 - val_mean_squared_error: 0.0210 - val_mean_absolute_error: 0.1123 Epoch 22/100 99/100 [============================>.] - ETA: 0s - loss: 0.0656 - mean_squared_error: 0.0656 - mean_absolute_error: 0.1975 Epoch 22: val_loss improved from 0.02095 to 0.01882, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 3s 28ms/step - loss: 0.0656 - mean_squared_error: 0.0656 - mean_absolute_error: 0.1974 - val_loss: 0.0188 - val_mean_squared_error: 0.0188 - val_mean_absolute_error: 0.1067 Epoch 23/100 99/100 [============================>.] - ETA: 0s - loss: 0.0552 - mean_squared_error: 0.0552 - mean_absolute_error: 0.1813 Epoch 23: val_loss improved from 0.01882 to 0.01746, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 3s 25ms/step - loss: 0.0551 - mean_squared_error: 0.0551 - mean_absolute_error: 0.1812 - val_loss: 0.0175 - val_mean_squared_error: 0.0175 - val_mean_absolute_error: 0.1026 Epoch 24/100 100/100 [==============================] - ETA: 0s - loss: 0.0488 - mean_squared_error: 0.0488 - mean_absolute_error: 0.1710 Epoch 24: val_loss improved from 0.01746 to 0.01473, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 57ms/step - loss: 0.0488 - mean_squared_error: 0.0488 - mean_absolute_error: 0.1710 - val_loss: 0.0147 - val_mean_squared_error: 0.0147 - val_mean_absolute_error: 0.0931 Epoch 25/100 100/100 [==============================] - ETA: 0s - loss: 0.0424 - mean_squared_error: 0.0424 - mean_absolute_error: 0.1593 Epoch 25: val_loss improved from 0.01473 to 0.01196, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 10s 105ms/step - loss: 0.0424 - mean_squared_error: 0.0424 - mean_absolute_error: 0.1593 - val_loss: 0.0120 - val_mean_squared_error: 0.0120 - val_mean_absolute_error: 0.0852 Epoch 26/100 100/100 [==============================] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387 - mean_absolute_error: 0.1520 Epoch 26: val_loss did not improve from 0.01196 100/100 [==============================] - 6s 63ms/step - loss: 0.0387 - mean_squared_error: 0.0387 - mean_absolute_error: 0.1520 - val_loss: 0.0127 - val_mean_squared_error: 0.0127 - val_mean_absolute_error: 0.0879 Epoch 27/100 100/100 [==============================] - ETA: 0s - loss: 0.0337 - mean_squared_error: 0.0337 - mean_absolute_error: 0.1417 Epoch 27: val_loss did not improve from 0.01196 100/100 [==============================] - 7s 70ms/step - loss: 0.0337 - mean_squared_error: 0.0337 - mean_absolute_error: 0.1417 - val_loss: 0.0125 - val_mean_squared_error: 0.0125 - val_mean_absolute_error: 0.0867 Epoch 28/100 100/100 [==============================] - ETA: 0s - loss: 0.0308 - mean_squared_error: 0.0308 - mean_absolute_error: 0.1362 Epoch 28: val_loss improved from 0.01196 to 0.01156, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 76ms/step - loss: 0.0308 - mean_squared_error: 0.0308 - mean_absolute_error: 0.1362 - val_loss: 0.0116 - val_mean_squared_error: 0.0116 - val_mean_absolute_error: 0.0828 Epoch 29/100 100/100 [==============================] - ETA: 0s - loss: 0.0265 - mean_squared_error: 0.0265 - mean_absolute_error: 0.1260 Epoch 29: val_loss improved from 0.01156 to 0.00907, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 92ms/step - loss: 0.0265 - mean_squared_error: 0.0265 - mean_absolute_error: 0.1260 - val_loss: 0.0091 - val_mean_squared_error: 0.0091 - val_mean_absolute_error: 0.0745 Epoch 30/100 100/100 [==============================] - ETA: 0s - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1204 Epoch 30: val_loss did not improve from 0.00907 100/100 [==============================] - 10s 97ms/step - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1204 - val_loss: 0.0100 - val_mean_squared_error: 0.0100 - val_mean_absolute_error: 0.0778 Epoch 31/100 100/100 [==============================] - ETA: 0s - loss: 0.0225 - mean_squared_error: 0.0225 - mean_absolute_error: 0.1162 Epoch 31: val_loss did not improve from 0.00907 100/100 [==============================] - 8s 76ms/step - loss: 0.0225 - mean_squared_error: 0.0225 - mean_absolute_error: 0.1162 - val_loss: 0.0096 - val_mean_squared_error: 0.0096 - val_mean_absolute_error: 0.0761 Epoch 32/100 100/100 [==============================] - ETA: 0s - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.1121 Epoch 32: val_loss improved from 0.00907 to 0.00874, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 69ms/step - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.1121 - val_loss: 0.0087 - val_mean_squared_error: 0.0087 - val_mean_absolute_error: 0.0731 Epoch 33/100 100/100 [==============================] - ETA: 0s - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1059 Epoch 33: val_loss improved from 0.00874 to 0.00794, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 84ms/step - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1059 - val_loss: 0.0079 - val_mean_squared_error: 0.0079 - val_mean_absolute_error: 0.0696 Epoch 34/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1031 Epoch 34: val_loss improved from 0.00794 to 0.00788, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 82ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1031 - val_loss: 0.0079 - val_mean_squared_error: 0.0079 - val_mean_absolute_error: 0.0686 Epoch 35/100 100/100 [==============================] - ETA: 0s - loss: 0.0167 - mean_squared_error: 0.0167 - mean_absolute_error: 0.1004 Epoch 35: val_loss improved from 0.00788 to 0.00765, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 10s 99ms/step - loss: 0.0167 - mean_squared_error: 0.0167 - mean_absolute_error: 0.1004 - val_loss: 0.0076 - val_mean_squared_error: 0.0076 - val_mean_absolute_error: 0.0680 Epoch 36/100 100/100 [==============================] - ETA: 0s - loss: 0.0156 - mean_squared_error: 0.0156 - mean_absolute_error: 0.0965 Epoch 36: val_loss improved from 0.00765 to 0.00709, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 11s 113ms/step - loss: 0.0156 - mean_squared_error: 0.0156 - mean_absolute_error: 0.0965 - val_loss: 0.0071 - val_mean_squared_error: 0.0071 - val_mean_absolute_error: 0.0654 Epoch 37/100 100/100 [==============================] - ETA: 0s - loss: 0.0152 - mean_squared_error: 0.0152 - mean_absolute_error: 0.0956 Epoch 37: val_loss did not improve from 0.00709 100/100 [==============================] - 11s 109ms/step - loss: 0.0152 - mean_squared_error: 0.0152 - mean_absolute_error: 0.0956 - val_loss: 0.0083 - val_mean_squared_error: 0.0083 - val_mean_absolute_error: 0.0710 Epoch 38/100 100/100 [==============================] - ETA: 0s - loss: 0.0145 - mean_squared_error: 0.0145 - mean_absolute_error: 0.0933 Epoch 38: val_loss did not improve from 0.00709 100/100 [==============================] - 11s 109ms/step - loss: 0.0145 - mean_squared_error: 0.0145 - mean_absolute_error: 0.0933 - val_loss: 0.0075 - val_mean_squared_error: 0.0075 - val_mean_absolute_error: 0.0677 Epoch 39/100 100/100 [==============================] - ETA: 0s - loss: 0.0138 - mean_squared_error: 0.0138 - mean_absolute_error: 0.0912 Epoch 39: val_loss did not improve from 0.00709 100/100 [==============================] - 8s 79ms/step - loss: 0.0138 - mean_squared_error: 0.0138 - mean_absolute_error: 0.0912 - val_loss: 0.0076 - val_mean_squared_error: 0.0076 - val_mean_absolute_error: 0.0677 Epoch 40/100 100/100 [==============================] - ETA: 0s - loss: 0.0140 - mean_squared_error: 0.0140 - mean_absolute_error: 0.0918 Epoch 40: val_loss did not improve from 0.00709 100/100 [==============================] - 7s 67ms/step - loss: 0.0140 - mean_squared_error: 0.0140 - mean_absolute_error: 0.0918 - val_loss: 0.0078 - val_mean_squared_error: 0.0078 - val_mean_absolute_error: 0.0685 Epoch 41/100 100/100 [==============================] - ETA: 0s - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0921 Epoch 41: val_loss improved from 0.00709 to 0.00699, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 71ms/step - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0921 - val_loss: 0.0070 - val_mean_squared_error: 0.0070 - val_mean_absolute_error: 0.0652 Epoch 42/100 98/100 [============================>.] - ETA: 0s - loss: 0.0137 - mean_squared_error: 0.0137 - mean_absolute_error: 0.0905 Epoch 42: val_loss did not improve from 0.00699 100/100 [==============================] - 3s 34ms/step - loss: 0.0137 - mean_squared_error: 0.0137 - mean_absolute_error: 0.0905 - val_loss: 0.0092 - val_mean_squared_error: 0.0092 - val_mean_absolute_error: 0.0745 Epoch 43/100 99/100 [============================>.] - ETA: 0s - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0938 Epoch 43: val_loss did not improve from 0.00699 100/100 [==============================] - 3s 26ms/step - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0938 - val_loss: 0.0097 - val_mean_squared_error: 0.0097 - val_mean_absolute_error: 0.0756 Epoch 44/100 100/100 [==============================] - ETA: 0s - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0937 Epoch 44: val_loss did not improve from 0.00699 100/100 [==============================] - 4s 39ms/step - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0937 - val_loss: 0.0078 - val_mean_squared_error: 0.0078 - val_mean_absolute_error: 0.0683 Epoch 45/100 100/100 [==============================] - ETA: 0s - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0939 Epoch 45: val_loss did not improve from 0.00699 100/100 [==============================] - 7s 69ms/step - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0939 - val_loss: 0.0075 - val_mean_squared_error: 0.0075 - val_mean_absolute_error: 0.0675 Epoch 46/100 100/100 [==============================] - ETA: 0s - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0940 Epoch 46: val_loss did not improve from 0.00699 100/100 [==============================] - 10s 97ms/step - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0940 - val_loss: 0.0079 - val_mean_squared_error: 0.0079 - val_mean_absolute_error: 0.0694 Epoch 47/100 100/100 [==============================] - ETA: 0s - loss: 0.0144 - mean_squared_error: 0.0144 - mean_absolute_error: 0.0930 Epoch 47: val_loss did not improve from 0.00699 100/100 [==============================] - 10s 97ms/step - loss: 0.0144 - mean_squared_error: 0.0144 - mean_absolute_error: 0.0930 - val_loss: 0.0087 - val_mean_squared_error: 0.0087 - val_mean_absolute_error: 0.0719 Epoch 48/100 100/100 [==============================] - ETA: 0s - loss: 0.0144 - mean_squared_error: 0.0144 - mean_absolute_error: 0.0930 Epoch 48: val_loss did not improve from 0.00699 100/100 [==============================] - 9s 87ms/step - loss: 0.0144 - mean_squared_error: 0.0144 - mean_absolute_error: 0.0930 - val_loss: 0.0073 - val_mean_squared_error: 0.0073 - val_mean_absolute_error: 0.0665 Epoch 49/100 100/100 [==============================] - ETA: 0s - loss: 0.0142 - mean_squared_error: 0.0142 - mean_absolute_error: 0.0923 Epoch 49: val_loss did not improve from 0.00699 100/100 [==============================] - 10s 100ms/step - loss: 0.0142 - mean_squared_error: 0.0142 - mean_absolute_error: 0.0923 - val_loss: 0.0085 - val_mean_squared_error: 0.0085 - val_mean_absolute_error: 0.0719 Epoch 50/100 100/100 [==============================] - ETA: 0s - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0921 Epoch 50: val_loss did not improve from 0.00699 100/100 [==============================] - 10s 101ms/step - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0921 - val_loss: 0.0077 - val_mean_squared_error: 0.0077 - val_mean_absolute_error: 0.0680 Epoch 51/100 100/100 [==============================] - ETA: 0s - loss: 0.0131 - mean_squared_error: 0.0131 - mean_absolute_error: 0.0888 Epoch 51: val_loss did not improve from 0.00699 100/100 [==============================] - 7s 73ms/step - loss: 0.0131 - mean_squared_error: 0.0131 - mean_absolute_error: 0.0888 - val_loss: 0.0078 - val_mean_squared_error: 0.0078 - val_mean_absolute_error: 0.0690 Epoch 52/100 100/100 [==============================] - ETA: 0s - loss: 0.0133 - mean_squared_error: 0.0133 - mean_absolute_error: 0.0891 Epoch 52: val_loss improved from 0.00699 to 0.00667, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 76ms/step - loss: 0.0133 - mean_squared_error: 0.0133 - mean_absolute_error: 0.0891 - val_loss: 0.0067 - val_mean_squared_error: 0.0067 - val_mean_absolute_error: 0.0634 Epoch 53/100 100/100 [==============================] - ETA: 0s - loss: 0.0123 - mean_squared_error: 0.0123 - mean_absolute_error: 0.0859 Epoch 53: val_loss improved from 0.00667 to 0.00608, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 85ms/step - loss: 0.0123 - mean_squared_error: 0.0123 - mean_absolute_error: 0.0859 - val_loss: 0.0061 - val_mean_squared_error: 0.0061 - val_mean_absolute_error: 0.0613 Epoch 54/100 100/100 [==============================] - ETA: 0s - loss: 0.0120 - mean_squared_error: 0.0120 - mean_absolute_error: 0.0849 Epoch 54: val_loss did not improve from 0.00608 100/100 [==============================] - 8s 75ms/step - loss: 0.0120 - mean_squared_error: 0.0120 - mean_absolute_error: 0.0849 - val_loss: 0.0068 - val_mean_squared_error: 0.0068 - val_mean_absolute_error: 0.0649 Epoch 55/100 100/100 [==============================] - ETA: 0s - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0820 Epoch 55: val_loss improved from 0.00608 to 0.00580, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 71ms/step - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0820 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0595 Epoch 56/100 100/100 [==============================] - ETA: 0s - loss: 0.0108 - mean_squared_error: 0.0108 - mean_absolute_error: 0.0804 Epoch 56: val_loss improved from 0.00580 to 0.00562, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 70ms/step - loss: 0.0108 - mean_squared_error: 0.0108 - mean_absolute_error: 0.0804 - val_loss: 0.0056 - val_mean_squared_error: 0.0056 - val_mean_absolute_error: 0.0583 Epoch 57/100 100/100 [==============================] - ETA: 0s - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0775 Epoch 57: val_loss improved from 0.00562 to 0.00515, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 63ms/step - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0775 - val_loss: 0.0051 - val_mean_squared_error: 0.0051 - val_mean_absolute_error: 0.0559 Epoch 58/100 100/100 [==============================] - ETA: 0s - loss: 0.0090 - mean_squared_error: 0.0090 - mean_absolute_error: 0.0739 Epoch 58: val_loss improved from 0.00515 to 0.00498, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 77ms/step - loss: 0.0090 - mean_squared_error: 0.0090 - mean_absolute_error: 0.0739 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0551 Epoch 59/100 100/100 [==============================] - ETA: 0s - loss: 0.0086 - mean_squared_error: 0.0086 - mean_absolute_error: 0.0724 Epoch 59: val_loss improved from 0.00498 to 0.00471, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 79ms/step - loss: 0.0086 - mean_squared_error: 0.0086 - mean_absolute_error: 0.0724 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0532 Epoch 60/100 100/100 [==============================] - ETA: 0s - loss: 0.0080 - mean_squared_error: 0.0080 - mean_absolute_error: 0.0700 Epoch 60: val_loss improved from 0.00471 to 0.00461, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 69ms/step - loss: 0.0080 - mean_squared_error: 0.0080 - mean_absolute_error: 0.0700 - val_loss: 0.0046 - val_mean_squared_error: 0.0046 - val_mean_absolute_error: 0.0526 Epoch 61/100 100/100 [==============================] - ETA: 0s - loss: 0.0076 - mean_squared_error: 0.0076 - mean_absolute_error: 0.0680 Epoch 61: val_loss improved from 0.00461 to 0.00420, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 60ms/step - loss: 0.0076 - mean_squared_error: 0.0076 - mean_absolute_error: 0.0680 - val_loss: 0.0042 - val_mean_squared_error: 0.0042 - val_mean_absolute_error: 0.0504 Epoch 62/100 100/100 [==============================] - ETA: 0s - loss: 0.0071 - mean_squared_error: 0.0071 - mean_absolute_error: 0.0660 Epoch 62: val_loss improved from 0.00420 to 0.00420, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 5s 50ms/step - loss: 0.0071 - mean_squared_error: 0.0071 - mean_absolute_error: 0.0660 - val_loss: 0.0042 - val_mean_squared_error: 0.0042 - val_mean_absolute_error: 0.0506 Epoch 63/100 100/100 [==============================] - ETA: 0s - loss: 0.0066 - mean_squared_error: 0.0066 - mean_absolute_error: 0.0634 Epoch 63: val_loss improved from 0.00420 to 0.00383, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 65ms/step - loss: 0.0066 - mean_squared_error: 0.0066 - mean_absolute_error: 0.0634 - val_loss: 0.0038 - val_mean_squared_error: 0.0038 - val_mean_absolute_error: 0.0479 Epoch 64/100 100/100 [==============================] - ETA: 0s - loss: 0.0063 - mean_squared_error: 0.0063 - mean_absolute_error: 0.0619 Epoch 64: val_loss improved from 0.00383 to 0.00373, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 87ms/step - loss: 0.0063 - mean_squared_error: 0.0063 - mean_absolute_error: 0.0619 - val_loss: 0.0037 - val_mean_squared_error: 0.0037 - val_mean_absolute_error: 0.0477 Epoch 65/100 100/100 [==============================] - ETA: 0s - loss: 0.0061 - mean_squared_error: 0.0061 - mean_absolute_error: 0.0612 Epoch 65: val_loss improved from 0.00373 to 0.00363, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 85ms/step - loss: 0.0061 - mean_squared_error: 0.0061 - mean_absolute_error: 0.0612 - val_loss: 0.0036 - val_mean_squared_error: 0.0036 - val_mean_absolute_error: 0.0473 Epoch 66/100 100/100 [==============================] - ETA: 0s - loss: 0.0057 - mean_squared_error: 0.0057 - mean_absolute_error: 0.0591 Epoch 66: val_loss improved from 0.00363 to 0.00348, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 6s 62ms/step - loss: 0.0057 - mean_squared_error: 0.0057 - mean_absolute_error: 0.0591 - val_loss: 0.0035 - val_mean_squared_error: 0.0035 - val_mean_absolute_error: 0.0461 Epoch 67/100 100/100 [==============================] - ETA: 0s - loss: 0.0054 - mean_squared_error: 0.0054 - mean_absolute_error: 0.0573 Epoch 67: val_loss improved from 0.00348 to 0.00341, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 4s 40ms/step - loss: 0.0054 - mean_squared_error: 0.0054 - mean_absolute_error: 0.0573 - val_loss: 0.0034 - val_mean_squared_error: 0.0034 - val_mean_absolute_error: 0.0455 Epoch 68/100 100/100 [==============================] - ETA: 0s - loss: 0.0052 - mean_squared_error: 0.0052 - mean_absolute_error: 0.0564 Epoch 68: val_loss improved from 0.00341 to 0.00339, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 83ms/step - loss: 0.0052 - mean_squared_error: 0.0052 - mean_absolute_error: 0.0564 - val_loss: 0.0034 - val_mean_squared_error: 0.0034 - val_mean_absolute_error: 0.0455 Epoch 69/100 100/100 [==============================] - ETA: 0s - loss: 0.0049 - mean_squared_error: 0.0049 - mean_absolute_error: 0.0549 Epoch 69: val_loss improved from 0.00339 to 0.00315, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 73ms/step - loss: 0.0049 - mean_squared_error: 0.0049 - mean_absolute_error: 0.0549 - val_loss: 0.0031 - val_mean_squared_error: 0.0031 - val_mean_absolute_error: 0.0434 Epoch 70/100 100/100 [==============================] - ETA: 0s - loss: 0.0048 - mean_squared_error: 0.0048 - mean_absolute_error: 0.0540 Epoch 70: val_loss did not improve from 0.00315 100/100 [==============================] - 9s 90ms/step - loss: 0.0048 - mean_squared_error: 0.0048 - mean_absolute_error: 0.0540 - val_loss: 0.0033 - val_mean_squared_error: 0.0033 - val_mean_absolute_error: 0.0444 Epoch 71/100 100/100 [==============================] - ETA: 0s - loss: 0.0047 - mean_squared_error: 0.0047 - mean_absolute_error: 0.0534 Epoch 71: val_loss did not improve from 0.00315 100/100 [==============================] - 7s 75ms/step - loss: 0.0047 - mean_squared_error: 0.0047 - mean_absolute_error: 0.0534 - val_loss: 0.0032 - val_mean_squared_error: 0.0032 - val_mean_absolute_error: 0.0438 Epoch 72/100 100/100 [==============================] - ETA: 0s - loss: 0.0044 - mean_squared_error: 0.0044 - mean_absolute_error: 0.0522 Epoch 72: val_loss improved from 0.00315 to 0.00294, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 68ms/step - loss: 0.0044 - mean_squared_error: 0.0044 - mean_absolute_error: 0.0522 - val_loss: 0.0029 - val_mean_squared_error: 0.0029 - val_mean_absolute_error: 0.0420 Epoch 73/100 100/100 [==============================] - ETA: 0s - loss: 0.0043 - mean_squared_error: 0.0043 - mean_absolute_error: 0.0513 Epoch 73: val_loss did not improve from 0.00294 100/100 [==============================] - 8s 83ms/step - loss: 0.0043 - mean_squared_error: 0.0043 - mean_absolute_error: 0.0513 - val_loss: 0.0031 - val_mean_squared_error: 0.0031 - val_mean_absolute_error: 0.0430 Epoch 74/100 100/100 [==============================] - ETA: 0s - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0504 Epoch 74: val_loss improved from 0.00294 to 0.00284, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 70ms/step - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0504 - val_loss: 0.0028 - val_mean_squared_error: 0.0028 - val_mean_absolute_error: 0.0409 Epoch 75/100 100/100 [==============================] - ETA: 0s - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0502 Epoch 75: val_loss did not improve from 0.00284 100/100 [==============================] - 7s 73ms/step - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0502 - val_loss: 0.0029 - val_mean_squared_error: 0.0029 - val_mean_absolute_error: 0.0417 Epoch 76/100 100/100 [==============================] - ETA: 0s - loss: 0.0039 - mean_squared_error: 0.0039 - mean_absolute_error: 0.0490 Epoch 76: val_loss improved from 0.00284 to 0.00278, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 7s 71ms/step - loss: 0.0039 - mean_squared_error: 0.0039 - mean_absolute_error: 0.0490 - val_loss: 0.0028 - val_mean_squared_error: 0.0028 - val_mean_absolute_error: 0.0406 Epoch 77/100 100/100 [==============================] - ETA: 0s - loss: 0.0038 - mean_squared_error: 0.0038 - mean_absolute_error: 0.0480 Epoch 77: val_loss did not improve from 0.00278 100/100 [==============================] - 4s 36ms/step - loss: 0.0038 - mean_squared_error: 0.0038 - mean_absolute_error: 0.0480 - val_loss: 0.0028 - val_mean_squared_error: 0.0028 - val_mean_absolute_error: 0.0408 Epoch 78/100 100/100 [==============================] - ETA: 0s - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0476 Epoch 78: val_loss improved from 0.00278 to 0.00270, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 5s 48ms/step - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0476 - val_loss: 0.0027 - val_mean_squared_error: 0.0027 - val_mean_absolute_error: 0.0399 Epoch 79/100 100/100 [==============================] - ETA: 0s - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0474 Epoch 79: val_loss improved from 0.00270 to 0.00268, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 87ms/step - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0474 - val_loss: 0.0027 - val_mean_squared_error: 0.0027 - val_mean_absolute_error: 0.0400 Epoch 80/100 100/100 [==============================] - ETA: 0s - loss: 0.0036 - mean_squared_error: 0.0036 - mean_absolute_error: 0.0472 Epoch 80: val_loss did not improve from 0.00268 100/100 [==============================] - 10s 105ms/step - loss: 0.0036 - mean_squared_error: 0.0036 - mean_absolute_error: 0.0472 - val_loss: 0.0027 - val_mean_squared_error: 0.0027 - val_mean_absolute_error: 0.0399 Epoch 81/100 100/100 [==============================] - ETA: 0s - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0464 Epoch 81: val_loss improved from 0.00268 to 0.00266, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 11s 108ms/step - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0464 - val_loss: 0.0027 - val_mean_squared_error: 0.0027 - val_mean_absolute_error: 0.0398 Epoch 82/100 100/100 [==============================] - ETA: 0s - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0464 Epoch 82: val_loss improved from 0.00266 to 0.00255, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 10s 101ms/step - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0464 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0388 Epoch 83/100 100/100 [==============================] - ETA: 0s - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0461 Epoch 83: val_loss improved from 0.00255 to 0.00251, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 93ms/step - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0461 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0385 Epoch 84/100 100/100 [==============================] - ETA: 0s - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0458 Epoch 84: val_loss did not improve from 0.00251 100/100 [==============================] - 9s 92ms/step - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0458 - val_loss: 0.0027 - val_mean_squared_error: 0.0027 - val_mean_absolute_error: 0.0399 Epoch 85/100 99/100 [============================>.] - ETA: 0s - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0454 Epoch 85: val_loss did not improve from 0.00251 100/100 [==============================] - 3s 34ms/step - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0453 - val_loss: 0.0026 - val_mean_squared_error: 0.0026 - val_mean_absolute_error: 0.0393 Epoch 86/100 100/100 [==============================] - ETA: 0s - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0451 Epoch 86: val_loss did not improve from 0.00251 100/100 [==============================] - 6s 58ms/step - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0451 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0387 Epoch 87/100 100/100 [==============================] - ETA: 0s - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0451 Epoch 87: val_loss improved from 0.00251 to 0.00248, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 90ms/step - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0451 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0382 Epoch 88/100 100/100 [==============================] - ETA: 0s - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0450 Epoch 88: val_loss improved from 0.00248 to 0.00247, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 8s 81ms/step - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0450 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0382 Epoch 89/100 100/100 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0444 Epoch 89: val_loss improved from 0.00247 to 0.00246, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 10s 97ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0444 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0381 Epoch 90/100 100/100 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0443 Epoch 90: val_loss did not improve from 0.00246 100/100 [==============================] - 10s 100ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0443 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0385 Epoch 91/100 100/100 [==============================] - ETA: 0s - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0446 Epoch 91: val_loss did not improve from 0.00246 100/100 [==============================] - 10s 101ms/step - loss: 0.0033 - mean_squared_error: 0.0033 - mean_absolute_error: 0.0446 - val_loss: 0.0026 - val_mean_squared_error: 0.0026 - val_mean_absolute_error: 0.0397 Epoch 92/100 100/100 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0439 Epoch 92: val_loss improved from 0.00246 to 0.00245, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 88ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0439 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0380 Epoch 93/100 100/100 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0439 Epoch 93: val_loss did not improve from 0.00245 100/100 [==============================] - 7s 75ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0439 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0381 Epoch 94/100 100/100 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0434 Epoch 94: val_loss improved from 0.00245 to 0.00238, saving model to cfs4_small_model_X1.h5 100/100 [==============================] - 9s 89ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0434 - val_loss: 0.0024 - val_mean_squared_error: 0.0024 - val_mean_absolute_error: 0.0375 Epoch 95/100 100/100 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0432 Epoch 95: val_loss did not improve from 0.00238 100/100 [==============================] - 8s 75ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0432 - val_loss: 0.0024 - val_mean_squared_error: 0.0024 - val_mean_absolute_error: 0.0376 Epoch 96/100 100/100 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0436 Epoch 96: val_loss did not improve from 0.00238 100/100 [==============================] - 9s 90ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0436 - val_loss: 0.0024 - val_mean_squared_error: 0.0024 - val_mean_absolute_error: 0.0379 Epoch 97/100 100/100 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0433 Epoch 97: val_loss did not improve from 0.00238 100/100 [==============================] - 11s 106ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0433 - val_loss: 0.0024 - val_mean_squared_error: 0.0024 - val_mean_absolute_error: 0.0378 Epoch 98/100 100/100 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0433 Epoch 98: val_loss did not improve from 0.00238 100/100 [==============================] - 8s 79ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0433 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0390 Epoch 99/100 100/100 [==============================] - ETA: 0s - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0428 Epoch 99: val_loss did not improve from 0.00238 100/100 [==============================] - 9s 86ms/step - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0428 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0383 Epoch 100/100 100/100 [==============================] - ETA: 0s - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0430 Epoch 100: val_loss did not improve from 0.00238 100/100 [==============================] - 9s 88ms/step - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0430 - val_loss: 0.0024 - val_mean_squared_error: 0.0024 - val_mean_absolute_error: 0.0377
model_sm1.name
'seq_CNN_sm'
model_evaluate_and_plot(model_sm1,history_sm1,X_test1,y_test1)
32/32 [==============================] - 0s 7ms/step - loss: 0.0024 - mean_squared_error: 0.0024 - mean_absolute_error: 0.0378 Loss: 0.0024392143823206425 Mean Square Error: 0.0024392143823206425 Mean Absolute Error: 0.037766385823488235 32/32 [==============================] - 0s 6ms/step Test R2 score: 0.9734401726481011
model_sm2=construct_new_small_cfs_model(15)
batch_size = 32
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_small_model_X2.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
model_sm2.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
history_sm2 =model_sm2.fit(X_train2,y_train2,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
# ## Evaluate the trained model
# In[ ]:
Epoch 1/100 100/100 [==============================] - ETA: 0s - loss: 8.3274 - mean_squared_error: 8.3274 - mean_absolute_error: 2.1536 Epoch 1: val_loss improved from inf to 0.29960, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 31ms/step - loss: 8.3274 - mean_squared_error: 8.3274 - mean_absolute_error: 2.1536 - val_loss: 0.2996 - val_mean_squared_error: 0.2996 - val_mean_absolute_error: 0.4199 Epoch 2/100 100/100 [==============================] - ETA: 0s - loss: 4.6734 - mean_squared_error: 4.6734 - mean_absolute_error: 1.6463 Epoch 2: val_loss did not improve from 0.29960 100/100 [==============================] - 8s 78ms/step - loss: 4.6734 - mean_squared_error: 4.6734 - mean_absolute_error: 1.6463 - val_loss: 0.3255 - val_mean_squared_error: 0.3255 - val_mean_absolute_error: 0.4417 Epoch 3/100 100/100 [==============================] - ETA: 0s - loss: 3.1251 - mean_squared_error: 3.1251 - mean_absolute_error: 1.3483 Epoch 3: val_loss did not improve from 0.29960 100/100 [==============================] - 10s 97ms/step - loss: 3.1251 - mean_squared_error: 3.1251 - mean_absolute_error: 1.3483 - val_loss: 0.3344 - val_mean_squared_error: 0.3344 - val_mean_absolute_error: 0.4412 Epoch 4/100 100/100 [==============================] - ETA: 0s - loss: 2.2583 - mean_squared_error: 2.2583 - mean_absolute_error: 1.1547 Epoch 4: val_loss did not improve from 0.29960 100/100 [==============================] - 9s 91ms/step - loss: 2.2583 - mean_squared_error: 2.2583 - mean_absolute_error: 1.1547 - val_loss: 0.4226 - val_mean_squared_error: 0.4226 - val_mean_absolute_error: 0.4988 Epoch 5/100 100/100 [==============================] - ETA: 0s - loss: 1.6664 - mean_squared_error: 1.6664 - mean_absolute_error: 0.9937 Epoch 5: val_loss did not improve from 0.29960 100/100 [==============================] - 8s 77ms/step - loss: 1.6664 - mean_squared_error: 1.6664 - mean_absolute_error: 0.9937 - val_loss: 0.3506 - val_mean_squared_error: 0.3506 - val_mean_absolute_error: 0.4559 Epoch 6/100 100/100 [==============================] - ETA: 0s - loss: 1.2810 - mean_squared_error: 1.2810 - mean_absolute_error: 0.8694 Epoch 6: val_loss improved from 0.29960 to 0.29936, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 64ms/step - loss: 1.2810 - mean_squared_error: 1.2810 - mean_absolute_error: 0.8694 - val_loss: 0.2994 - val_mean_squared_error: 0.2994 - val_mean_absolute_error: 0.4257 Epoch 7/100 100/100 [==============================] - ETA: 0s - loss: 0.9905 - mean_squared_error: 0.9905 - mean_absolute_error: 0.7687 Epoch 7: val_loss improved from 0.29936 to 0.28355, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 64ms/step - loss: 0.9905 - mean_squared_error: 0.9905 - mean_absolute_error: 0.7687 - val_loss: 0.2835 - val_mean_squared_error: 0.2835 - val_mean_absolute_error: 0.4144 Epoch 8/100 100/100 [==============================] - ETA: 0s - loss: 0.7661 - mean_squared_error: 0.7661 - mean_absolute_error: 0.6769 Epoch 8: val_loss improved from 0.28355 to 0.21052, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 68ms/step - loss: 0.7661 - mean_squared_error: 0.7661 - mean_absolute_error: 0.6769 - val_loss: 0.2105 - val_mean_squared_error: 0.2105 - val_mean_absolute_error: 0.3532 Epoch 9/100 100/100 [==============================] - ETA: 0s - loss: 0.6117 - mean_squared_error: 0.6117 - mean_absolute_error: 0.6015 Epoch 9: val_loss improved from 0.21052 to 0.16810, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 69ms/step - loss: 0.6117 - mean_squared_error: 0.6117 - mean_absolute_error: 0.6015 - val_loss: 0.1681 - val_mean_squared_error: 0.1681 - val_mean_absolute_error: 0.3149 Epoch 10/100 100/100 [==============================] - ETA: 0s - loss: 0.4950 - mean_squared_error: 0.4950 - mean_absolute_error: 0.5447 Epoch 10: val_loss improved from 0.16810 to 0.14101, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 69ms/step - loss: 0.4950 - mean_squared_error: 0.4950 - mean_absolute_error: 0.5447 - val_loss: 0.1410 - val_mean_squared_error: 0.1410 - val_mean_absolute_error: 0.2900 Epoch 11/100 100/100 [==============================] - ETA: 0s - loss: 0.4045 - mean_squared_error: 0.4045 - mean_absolute_error: 0.4909 Epoch 11: val_loss improved from 0.14101 to 0.11018, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 5s 51ms/step - loss: 0.4045 - mean_squared_error: 0.4045 - mean_absolute_error: 0.4909 - val_loss: 0.1102 - val_mean_squared_error: 0.1102 - val_mean_absolute_error: 0.2561 Epoch 12/100 100/100 [==============================] - ETA: 0s - loss: 0.3298 - mean_squared_error: 0.3298 - mean_absolute_error: 0.4446 Epoch 12: val_loss improved from 0.11018 to 0.07733, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 8s 77ms/step - loss: 0.3298 - mean_squared_error: 0.3298 - mean_absolute_error: 0.4446 - val_loss: 0.0773 - val_mean_squared_error: 0.0773 - val_mean_absolute_error: 0.2112 Epoch 13/100 100/100 [==============================] - ETA: 0s - loss: 0.2748 - mean_squared_error: 0.2748 - mean_absolute_error: 0.4065 Epoch 13: val_loss improved from 0.07733 to 0.06858, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 56ms/step - loss: 0.2748 - mean_squared_error: 0.2748 - mean_absolute_error: 0.4065 - val_loss: 0.0686 - val_mean_squared_error: 0.0686 - val_mean_absolute_error: 0.1996 Epoch 14/100 100/100 [==============================] - ETA: 0s - loss: 0.2349 - mean_squared_error: 0.2349 - mean_absolute_error: 0.3748 Epoch 14: val_loss did not improve from 0.06858 100/100 [==============================] - 6s 55ms/step - loss: 0.2349 - mean_squared_error: 0.2349 - mean_absolute_error: 0.3748 - val_loss: 0.0733 - val_mean_squared_error: 0.0733 - val_mean_absolute_error: 0.2053 Epoch 15/100 100/100 [==============================] - ETA: 0s - loss: 0.1989 - mean_squared_error: 0.1989 - mean_absolute_error: 0.3450 Epoch 15: val_loss improved from 0.06858 to 0.06083, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 61ms/step - loss: 0.1989 - mean_squared_error: 0.1989 - mean_absolute_error: 0.3450 - val_loss: 0.0608 - val_mean_squared_error: 0.0608 - val_mean_absolute_error: 0.1860 Epoch 16/100 100/100 [==============================] - ETA: 0s - loss: 0.1681 - mean_squared_error: 0.1681 - mean_absolute_error: 0.3167 Epoch 16: val_loss improved from 0.06083 to 0.05424, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 65ms/step - loss: 0.1681 - mean_squared_error: 0.1681 - mean_absolute_error: 0.3167 - val_loss: 0.0542 - val_mean_squared_error: 0.0542 - val_mean_absolute_error: 0.1776 Epoch 17/100 100/100 [==============================] - ETA: 0s - loss: 0.1459 - mean_squared_error: 0.1459 - mean_absolute_error: 0.2948 Epoch 17: val_loss improved from 0.05424 to 0.04983, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 9s 87ms/step - loss: 0.1459 - mean_squared_error: 0.1459 - mean_absolute_error: 0.2948 - val_loss: 0.0498 - val_mean_squared_error: 0.0498 - val_mean_absolute_error: 0.1674 Epoch 18/100 100/100 [==============================] - ETA: 0s - loss: 0.1279 - mean_squared_error: 0.1279 - mean_absolute_error: 0.2749 Epoch 18: val_loss improved from 0.04983 to 0.04138, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 71ms/step - loss: 0.1279 - mean_squared_error: 0.1279 - mean_absolute_error: 0.2749 - val_loss: 0.0414 - val_mean_squared_error: 0.0414 - val_mean_absolute_error: 0.1485 Epoch 19/100 100/100 [==============================] - ETA: 0s - loss: 0.1099 - mean_squared_error: 0.1099 - mean_absolute_error: 0.2551 Epoch 19: val_loss improved from 0.04138 to 0.03720, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 9s 92ms/step - loss: 0.1099 - mean_squared_error: 0.1099 - mean_absolute_error: 0.2551 - val_loss: 0.0372 - val_mean_squared_error: 0.0372 - val_mean_absolute_error: 0.1386 Epoch 20/100 99/100 [============================>.] - ETA: 0s - loss: 0.0982 - mean_squared_error: 0.0982 - mean_absolute_error: 0.2386 Epoch 20: val_loss did not improve from 0.03720 100/100 [==============================] - 4s 37ms/step - loss: 0.0979 - mean_squared_error: 0.0979 - mean_absolute_error: 0.2383 - val_loss: 0.0387 - val_mean_squared_error: 0.0387 - val_mean_absolute_error: 0.1430 Epoch 21/100 99/100 [============================>.] - ETA: 0s - loss: 0.0898 - mean_squared_error: 0.0898 - mean_absolute_error: 0.2289 Epoch 21: val_loss improved from 0.03720 to 0.03630, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 34ms/step - loss: 0.0897 - mean_squared_error: 0.0897 - mean_absolute_error: 0.2288 - val_loss: 0.0363 - val_mean_squared_error: 0.0363 - val_mean_absolute_error: 0.1375 Epoch 22/100 100/100 [==============================] - ETA: 0s - loss: 0.0829 - mean_squared_error: 0.0829 - mean_absolute_error: 0.2192 Epoch 22: val_loss did not improve from 0.03630 100/100 [==============================] - 7s 69ms/step - loss: 0.0829 - mean_squared_error: 0.0829 - mean_absolute_error: 0.2192 - val_loss: 0.0372 - val_mean_squared_error: 0.0372 - val_mean_absolute_error: 0.1418 Epoch 23/100 99/100 [============================>.] - ETA: 0s - loss: 0.0735 - mean_squared_error: 0.0735 - mean_absolute_error: 0.2060 Epoch 23: val_loss improved from 0.03630 to 0.03400, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 34ms/step - loss: 0.0734 - mean_squared_error: 0.0734 - mean_absolute_error: 0.2059 - val_loss: 0.0340 - val_mean_squared_error: 0.0340 - val_mean_absolute_error: 0.1291 Epoch 24/100 100/100 [==============================] - ETA: 0s - loss: 0.0676 - mean_squared_error: 0.0676 - mean_absolute_error: 0.1959 Epoch 24: val_loss did not improve from 0.03400 100/100 [==============================] - 7s 71ms/step - loss: 0.0676 - mean_squared_error: 0.0676 - mean_absolute_error: 0.1959 - val_loss: 0.0361 - val_mean_squared_error: 0.0361 - val_mean_absolute_error: 0.1352 Epoch 25/100 100/100 [==============================] - ETA: 0s - loss: 0.0627 - mean_squared_error: 0.0627 - mean_absolute_error: 0.1878 Epoch 25: val_loss improved from 0.03400 to 0.03238, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 28ms/step - loss: 0.0627 - mean_squared_error: 0.0627 - mean_absolute_error: 0.1878 - val_loss: 0.0324 - val_mean_squared_error: 0.0324 - val_mean_absolute_error: 0.1269 Epoch 26/100 99/100 [============================>.] - ETA: 0s - loss: 0.0589 - mean_squared_error: 0.0589 - mean_absolute_error: 0.1814 Epoch 26: val_loss improved from 0.03238 to 0.03194, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 30ms/step - loss: 0.0589 - mean_squared_error: 0.0589 - mean_absolute_error: 0.1815 - val_loss: 0.0319 - val_mean_squared_error: 0.0319 - val_mean_absolute_error: 0.1273 Epoch 27/100 100/100 [==============================] - ETA: 0s - loss: 0.0569 - mean_squared_error: 0.0569 - mean_absolute_error: 0.1773 Epoch 27: val_loss improved from 0.03194 to 0.03064, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 5s 45ms/step - loss: 0.0569 - mean_squared_error: 0.0569 - mean_absolute_error: 0.1773 - val_loss: 0.0306 - val_mean_squared_error: 0.0306 - val_mean_absolute_error: 0.1229 Epoch 28/100 100/100 [==============================] - ETA: 0s - loss: 0.0539 - mean_squared_error: 0.0539 - mean_absolute_error: 0.1726 Epoch 28: val_loss improved from 0.03064 to 0.02873, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 62ms/step - loss: 0.0539 - mean_squared_error: 0.0539 - mean_absolute_error: 0.1726 - val_loss: 0.0287 - val_mean_squared_error: 0.0287 - val_mean_absolute_error: 0.1172 Epoch 29/100 99/100 [============================>.] - ETA: 0s - loss: 0.0502 - mean_squared_error: 0.0502 - mean_absolute_error: 0.1648 Epoch 29: val_loss did not improve from 0.02873 100/100 [==============================] - 6s 58ms/step - loss: 0.0505 - mean_squared_error: 0.0505 - mean_absolute_error: 0.1652 - val_loss: 0.0324 - val_mean_squared_error: 0.0324 - val_mean_absolute_error: 0.1250 Epoch 30/100 100/100 [==============================] - ETA: 0s - loss: 0.0481 - mean_squared_error: 0.0481 - mean_absolute_error: 0.1612 Epoch 30: val_loss improved from 0.02873 to 0.02648, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 61ms/step - loss: 0.0481 - mean_squared_error: 0.0481 - mean_absolute_error: 0.1612 - val_loss: 0.0265 - val_mean_squared_error: 0.0265 - val_mean_absolute_error: 0.1103 Epoch 31/100 100/100 [==============================] - ETA: 0s - loss: 0.0470 - mean_squared_error: 0.0470 - mean_absolute_error: 0.1595 Epoch 31: val_loss did not improve from 0.02648 100/100 [==============================] - 8s 81ms/step - loss: 0.0470 - mean_squared_error: 0.0470 - mean_absolute_error: 0.1595 - val_loss: 0.0279 - val_mean_squared_error: 0.0279 - val_mean_absolute_error: 0.1128 Epoch 32/100 99/100 [============================>.] - ETA: 0s - loss: 0.0455 - mean_squared_error: 0.0455 - mean_absolute_error: 0.1560 Epoch 32: val_loss did not improve from 0.02648 100/100 [==============================] - 4s 42ms/step - loss: 0.0456 - mean_squared_error: 0.0456 - mean_absolute_error: 0.1561 - val_loss: 0.0267 - val_mean_squared_error: 0.0267 - val_mean_absolute_error: 0.1101 Epoch 33/100 100/100 [==============================] - ETA: 0s - loss: 0.0454 - mean_squared_error: 0.0454 - mean_absolute_error: 0.1552 Epoch 33: val_loss did not improve from 0.02648 100/100 [==============================] - 3s 31ms/step - loss: 0.0454 - mean_squared_error: 0.0454 - mean_absolute_error: 0.1552 - val_loss: 0.0290 - val_mean_squared_error: 0.0290 - val_mean_absolute_error: 0.1179 Epoch 34/100 100/100 [==============================] - ETA: 0s - loss: 0.0446 - mean_squared_error: 0.0446 - mean_absolute_error: 0.1538 Epoch 34: val_loss did not improve from 0.02648 100/100 [==============================] - 5s 46ms/step - loss: 0.0446 - mean_squared_error: 0.0446 - mean_absolute_error: 0.1538 - val_loss: 0.0276 - val_mean_squared_error: 0.0276 - val_mean_absolute_error: 0.1128 Epoch 35/100 100/100 [==============================] - ETA: 0s - loss: 0.0433 - mean_squared_error: 0.0433 - mean_absolute_error: 0.1512 Epoch 35: val_loss did not improve from 0.02648 100/100 [==============================] - 9s 87ms/step - loss: 0.0433 - mean_squared_error: 0.0433 - mean_absolute_error: 0.1512 - val_loss: 0.0282 - val_mean_squared_error: 0.0282 - val_mean_absolute_error: 0.1131 Epoch 36/100 100/100 [==============================] - ETA: 0s - loss: 0.0421 - mean_squared_error: 0.0421 - mean_absolute_error: 0.1486 Epoch 36: val_loss did not improve from 0.02648 100/100 [==============================] - 9s 84ms/step - loss: 0.0421 - mean_squared_error: 0.0421 - mean_absolute_error: 0.1486 - val_loss: 0.0268 - val_mean_squared_error: 0.0268 - val_mean_absolute_error: 0.1095 Epoch 37/100 100/100 [==============================] - ETA: 0s - loss: 0.0416 - mean_squared_error: 0.0416 - mean_absolute_error: 0.1472 Epoch 37: val_loss did not improve from 0.02648 100/100 [==============================] - 9s 88ms/step - loss: 0.0416 - mean_squared_error: 0.0416 - mean_absolute_error: 0.1472 - val_loss: 0.0277 - val_mean_squared_error: 0.0277 - val_mean_absolute_error: 0.1138 Epoch 38/100 100/100 [==============================] - ETA: 0s - loss: 0.0410 - mean_squared_error: 0.0410 - mean_absolute_error: 0.1462 Epoch 38: val_loss did not improve from 0.02648 100/100 [==============================] - 10s 105ms/step - loss: 0.0410 - mean_squared_error: 0.0410 - mean_absolute_error: 0.1462 - val_loss: 0.0273 - val_mean_squared_error: 0.0273 - val_mean_absolute_error: 0.1113 Epoch 39/100 100/100 [==============================] - ETA: 0s - loss: 0.0412 - mean_squared_error: 0.0412 - mean_absolute_error: 0.1467 Epoch 39: val_loss improved from 0.02648 to 0.02637, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 8s 83ms/step - loss: 0.0412 - mean_squared_error: 0.0412 - mean_absolute_error: 0.1467 - val_loss: 0.0264 - val_mean_squared_error: 0.0264 - val_mean_absolute_error: 0.1091 Epoch 40/100 100/100 [==============================] - ETA: 0s - loss: 0.0401 - mean_squared_error: 0.0401 - mean_absolute_error: 0.1429 Epoch 40: val_loss improved from 0.02637 to 0.02495, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 70ms/step - loss: 0.0401 - mean_squared_error: 0.0401 - mean_absolute_error: 0.1429 - val_loss: 0.0249 - val_mean_squared_error: 0.0249 - val_mean_absolute_error: 0.1053 Epoch 41/100 100/100 [==============================] - ETA: 0s - loss: 0.0385 - mean_squared_error: 0.0385 - mean_absolute_error: 0.1404 Epoch 41: val_loss improved from 0.02495 to 0.02442, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 9s 94ms/step - loss: 0.0385 - mean_squared_error: 0.0385 - mean_absolute_error: 0.1404 - val_loss: 0.0244 - val_mean_squared_error: 0.0244 - val_mean_absolute_error: 0.1019 Epoch 42/100 100/100 [==============================] - ETA: 0s - loss: 0.0381 - mean_squared_error: 0.0381 - mean_absolute_error: 0.1395 Epoch 42: val_loss did not improve from 0.02442 100/100 [==============================] - 7s 74ms/step - loss: 0.0381 - mean_squared_error: 0.0381 - mean_absolute_error: 0.1395 - val_loss: 0.0252 - val_mean_squared_error: 0.0252 - val_mean_absolute_error: 0.1058 Epoch 43/100 100/100 [==============================] - ETA: 0s - loss: 0.0372 - mean_squared_error: 0.0372 - mean_absolute_error: 0.1374 Epoch 43: val_loss improved from 0.02442 to 0.02421, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 10s 101ms/step - loss: 0.0372 - mean_squared_error: 0.0372 - mean_absolute_error: 0.1374 - val_loss: 0.0242 - val_mean_squared_error: 0.0242 - val_mean_absolute_error: 0.1019 Epoch 44/100 100/100 [==============================] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363 - mean_absolute_error: 0.1345 Epoch 44: val_loss improved from 0.02421 to 0.02380, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 8s 82ms/step - loss: 0.0363 - mean_squared_error: 0.0363 - mean_absolute_error: 0.1345 - val_loss: 0.0238 - val_mean_squared_error: 0.0238 - val_mean_absolute_error: 0.1024 Epoch 45/100 100/100 [==============================] - ETA: 0s - loss: 0.0348 - mean_squared_error: 0.0348 - mean_absolute_error: 0.1311 Epoch 45: val_loss did not improve from 0.02380 100/100 [==============================] - 10s 102ms/step - loss: 0.0348 - mean_squared_error: 0.0348 - mean_absolute_error: 0.1311 - val_loss: 0.0257 - val_mean_squared_error: 0.0257 - val_mean_absolute_error: 0.1074 Epoch 46/100 100/100 [==============================] - ETA: 0s - loss: 0.0341 - mean_squared_error: 0.0341 - mean_absolute_error: 0.1290 Epoch 46: val_loss improved from 0.02380 to 0.02275, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 10s 103ms/step - loss: 0.0341 - mean_squared_error: 0.0341 - mean_absolute_error: 0.1290 - val_loss: 0.0228 - val_mean_squared_error: 0.0228 - val_mean_absolute_error: 0.1000 Epoch 47/100 100/100 [==============================] - ETA: 0s - loss: 0.0325 - mean_squared_error: 0.0325 - mean_absolute_error: 0.1249 Epoch 47: val_loss did not improve from 0.02275 100/100 [==============================] - 6s 59ms/step - loss: 0.0325 - mean_squared_error: 0.0325 - mean_absolute_error: 0.1249 - val_loss: 0.0231 - val_mean_squared_error: 0.0231 - val_mean_absolute_error: 0.0974 Epoch 48/100 100/100 [==============================] - ETA: 0s - loss: 0.0311 - mean_squared_error: 0.0311 - mean_absolute_error: 0.1214 Epoch 48: val_loss improved from 0.02275 to 0.02223, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 6s 65ms/step - loss: 0.0311 - mean_squared_error: 0.0311 - mean_absolute_error: 0.1214 - val_loss: 0.0222 - val_mean_squared_error: 0.0222 - val_mean_absolute_error: 0.0945 Epoch 49/100 100/100 [==============================] - ETA: 0s - loss: 0.0306 - mean_squared_error: 0.0306 - mean_absolute_error: 0.1194 Epoch 49: val_loss did not improve from 0.02223 100/100 [==============================] - 8s 79ms/step - loss: 0.0306 - mean_squared_error: 0.0306 - mean_absolute_error: 0.1194 - val_loss: 0.0234 - val_mean_squared_error: 0.0234 - val_mean_absolute_error: 0.0997 Epoch 50/100 100/100 [==============================] - ETA: 0s - loss: 0.0296 - mean_squared_error: 0.0296 - mean_absolute_error: 0.1168 Epoch 50: val_loss improved from 0.02223 to 0.02104, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 70ms/step - loss: 0.0296 - mean_squared_error: 0.0296 - mean_absolute_error: 0.1168 - val_loss: 0.0210 - val_mean_squared_error: 0.0210 - val_mean_absolute_error: 0.0891 Epoch 51/100 100/100 [==============================] - ETA: 0s - loss: 0.0285 - mean_squared_error: 0.0285 - mean_absolute_error: 0.1136 Epoch 51: val_loss improved from 0.02104 to 0.02064, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 72ms/step - loss: 0.0285 - mean_squared_error: 0.0285 - mean_absolute_error: 0.1136 - val_loss: 0.0206 - val_mean_squared_error: 0.0206 - val_mean_absolute_error: 0.0894 Epoch 52/100 100/100 [==============================] - ETA: 0s - loss: 0.0267 - mean_squared_error: 0.0267 - mean_absolute_error: 0.1082 Epoch 52: val_loss did not improve from 0.02064 100/100 [==============================] - 7s 73ms/step - loss: 0.0267 - mean_squared_error: 0.0267 - mean_absolute_error: 0.1082 - val_loss: 0.0210 - val_mean_squared_error: 0.0210 - val_mean_absolute_error: 0.0933 Epoch 53/100 100/100 [==============================] - ETA: 0s - loss: 0.0262 - mean_squared_error: 0.0262 - mean_absolute_error: 0.1062 Epoch 53: val_loss improved from 0.02064 to 0.02055, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 73ms/step - loss: 0.0262 - mean_squared_error: 0.0262 - mean_absolute_error: 0.1062 - val_loss: 0.0206 - val_mean_squared_error: 0.0206 - val_mean_absolute_error: 0.0869 Epoch 54/100 100/100 [==============================] - ETA: 0s - loss: 0.0255 - mean_squared_error: 0.0255 - mean_absolute_error: 0.1036 Epoch 54: val_loss improved from 0.02055 to 0.01950, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 10s 103ms/step - loss: 0.0255 - mean_squared_error: 0.0255 - mean_absolute_error: 0.1036 - val_loss: 0.0195 - val_mean_squared_error: 0.0195 - val_mean_absolute_error: 0.0835 Epoch 55/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1018 Epoch 55: val_loss improved from 0.01950 to 0.01944, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 11s 105ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1018 - val_loss: 0.0194 - val_mean_squared_error: 0.0194 - val_mean_absolute_error: 0.0817 Epoch 56/100 100/100 [==============================] - ETA: 0s - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.0991 Epoch 56: val_loss improved from 0.01944 to 0.01935, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 67ms/step - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.0991 - val_loss: 0.0194 - val_mean_squared_error: 0.0194 - val_mean_absolute_error: 0.0803 Epoch 57/100 100/100 [==============================] - ETA: 0s - loss: 0.0234 - mean_squared_error: 0.0234 - mean_absolute_error: 0.0956 Epoch 57: val_loss improved from 0.01935 to 0.01925, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 8s 75ms/step - loss: 0.0234 - mean_squared_error: 0.0234 - mean_absolute_error: 0.0956 - val_loss: 0.0192 - val_mean_squared_error: 0.0192 - val_mean_absolute_error: 0.0832 Epoch 58/100 100/100 [==============================] - ETA: 0s - loss: 0.0230 - mean_squared_error: 0.0230 - mean_absolute_error: 0.0947 Epoch 58: val_loss improved from 0.01925 to 0.01802, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 70ms/step - loss: 0.0230 - mean_squared_error: 0.0230 - mean_absolute_error: 0.0947 - val_loss: 0.0180 - val_mean_squared_error: 0.0180 - val_mean_absolute_error: 0.0750 Epoch 59/100 100/100 [==============================] - ETA: 0s - loss: 0.0222 - mean_squared_error: 0.0222 - mean_absolute_error: 0.0913 Epoch 59: val_loss did not improve from 0.01802 100/100 [==============================] - 8s 77ms/step - loss: 0.0222 - mean_squared_error: 0.0222 - mean_absolute_error: 0.0913 - val_loss: 0.0182 - val_mean_squared_error: 0.0182 - val_mean_absolute_error: 0.0767 Epoch 60/100 100/100 [==============================] - ETA: 0s - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.0893 Epoch 60: val_loss did not improve from 0.01802 100/100 [==============================] - 9s 89ms/step - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.0893 - val_loss: 0.0182 - val_mean_squared_error: 0.0182 - val_mean_absolute_error: 0.0798 Epoch 61/100 100/100 [==============================] - ETA: 0s - loss: 0.0216 - mean_squared_error: 0.0216 - mean_absolute_error: 0.0880 Epoch 61: val_loss improved from 0.01802 to 0.01798, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 66ms/step - loss: 0.0216 - mean_squared_error: 0.0216 - mean_absolute_error: 0.0880 - val_loss: 0.0180 - val_mean_squared_error: 0.0180 - val_mean_absolute_error: 0.0747 Epoch 62/100 100/100 [==============================] - ETA: 0s - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.0856 Epoch 62: val_loss did not improve from 0.01798 100/100 [==============================] - 7s 65ms/step - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.0856 - val_loss: 0.0181 - val_mean_squared_error: 0.0181 - val_mean_absolute_error: 0.0785 Epoch 63/100 100/100 [==============================] - ETA: 0s - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.0855 Epoch 63: val_loss improved from 0.01798 to 0.01741, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 7s 66ms/step - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.0855 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.0724 Epoch 64/100 100/100 [==============================] - ETA: 0s - loss: 0.0207 - mean_squared_error: 0.0207 - mean_absolute_error: 0.0839 Epoch 64: val_loss did not improve from 0.01741 100/100 [==============================] - 10s 104ms/step - loss: 0.0207 - mean_squared_error: 0.0207 - mean_absolute_error: 0.0839 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.0705 Epoch 65/100 100/100 [==============================] - ETA: 0s - loss: 0.0206 - mean_squared_error: 0.0206 - mean_absolute_error: 0.0830 Epoch 65: val_loss improved from 0.01741 to 0.01721, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 10s 100ms/step - loss: 0.0206 - mean_squared_error: 0.0206 - mean_absolute_error: 0.0830 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0702 Epoch 66/100 100/100 [==============================] - ETA: 0s - loss: 0.0202 - mean_squared_error: 0.0202 - mean_absolute_error: 0.0818 Epoch 66: val_loss did not improve from 0.01721 100/100 [==============================] - 11s 108ms/step - loss: 0.0202 - mean_squared_error: 0.0202 - mean_absolute_error: 0.0818 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.0743 Epoch 67/100 100/100 [==============================] - ETA: 0s - loss: 0.0203 - mean_squared_error: 0.0203 - mean_absolute_error: 0.0813 Epoch 67: val_loss did not improve from 0.01721 100/100 [==============================] - 10s 96ms/step - loss: 0.0203 - mean_squared_error: 0.0203 - mean_absolute_error: 0.0813 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.0749 Epoch 68/100 100/100 [==============================] - ETA: 0s - loss: 0.0201 - mean_squared_error: 0.0201 - mean_absolute_error: 0.0804 Epoch 68: val_loss improved from 0.01721 to 0.01714, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 8s 84ms/step - loss: 0.0201 - mean_squared_error: 0.0201 - mean_absolute_error: 0.0804 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0717 Epoch 69/100 100/100 [==============================] - ETA: 0s - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.0795 Epoch 69: val_loss did not improve from 0.01714 100/100 [==============================] - 7s 74ms/step - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.0795 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0693 Epoch 70/100 100/100 [==============================] - ETA: 0s - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.0799 Epoch 70: val_loss did not improve from 0.01714 100/100 [==============================] - 4s 35ms/step - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.0799 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0719 Epoch 71/100 99/100 [============================>.] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0785 Epoch 71: val_loss did not improve from 0.01714 100/100 [==============================] - 3s 32ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0784 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0702 Epoch 72/100 99/100 [============================>.] - ETA: 0s - loss: 0.0198 - mean_squared_error: 0.0198 - mean_absolute_error: 0.0791 Epoch 72: val_loss improved from 0.01714 to 0.01710, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 3s 30ms/step - loss: 0.0196 - mean_squared_error: 0.0196 - mean_absolute_error: 0.0789 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0701 Epoch 73/100 100/100 [==============================] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0785 Epoch 73: val_loss improved from 0.01710 to 0.01677, saving model to cfs4_small_model_X2.h5 100/100 [==============================] - 4s 39ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0785 - val_loss: 0.0168 - val_mean_squared_error: 0.0168 - val_mean_absolute_error: 0.0650 Epoch 74/100 100/100 [==============================] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0778 Epoch 74: val_loss did not improve from 0.01677 100/100 [==============================] - 4s 36ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0778 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0688 Epoch 75/100 100/100 [==============================] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0781 Epoch 75: val_loss did not improve from 0.01677 100/100 [==============================] - 8s 80ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0781 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0660 Epoch 76/100 100/100 [==============================] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0779 Epoch 76: val_loss did not improve from 0.01677 100/100 [==============================] - 10s 97ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0779 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0658 Epoch 77/100 100/100 [==============================] - ETA: 0s - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0774 Epoch 77: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 90ms/step - loss: 0.0195 - mean_squared_error: 0.0195 - mean_absolute_error: 0.0774 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0663 Epoch 78/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0770 Epoch 78: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 87ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0770 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0719 Epoch 79/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0771 Epoch 79: val_loss did not improve from 0.01677 100/100 [==============================] - 5s 45ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0771 - val_loss: 0.0168 - val_mean_squared_error: 0.0168 - val_mean_absolute_error: 0.0647 Epoch 80/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0765 Epoch 80: val_loss did not improve from 0.01677 100/100 [==============================] - 8s 79ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0765 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0676 Epoch 81/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0769 Epoch 81: val_loss did not improve from 0.01677 100/100 [==============================] - 11s 110ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0769 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0683 Epoch 82/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0768 Epoch 82: val_loss did not improve from 0.01677 100/100 [==============================] - 11s 109ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0768 - val_loss: 0.0177 - val_mean_squared_error: 0.0177 - val_mean_absolute_error: 0.0791 Epoch 83/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0772 Epoch 83: val_loss did not improve from 0.01677 100/100 [==============================] - 8s 83ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.0772 - val_loss: 0.0173 - val_mean_squared_error: 0.0173 - val_mean_absolute_error: 0.0757 Epoch 84/100 100/100 [==============================] - ETA: 0s - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0768 Epoch 84: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 67ms/step - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0768 - val_loss: 0.0173 - val_mean_squared_error: 0.0173 - val_mean_absolute_error: 0.0745 Epoch 85/100 100/100 [==============================] - ETA: 0s - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0769 Epoch 85: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 68ms/step - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0769 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0664 Epoch 86/100 100/100 [==============================] - ETA: 0s - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0763 Epoch 86: val_loss did not improve from 0.01677 100/100 [==============================] - 10s 98ms/step - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0763 - val_loss: 0.0168 - val_mean_squared_error: 0.0168 - val_mean_absolute_error: 0.0654 Epoch 87/100 100/100 [==============================] - ETA: 0s - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0781 Epoch 87: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 94ms/step - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0781 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0613 Epoch 88/100 100/100 [==============================] - ETA: 0s - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0771 Epoch 88: val_loss did not improve from 0.01677 100/100 [==============================] - 10s 97ms/step - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.0771 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0676 Epoch 89/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0760 Epoch 89: val_loss did not improve from 0.01677 100/100 [==============================] - 6s 61ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0760 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0680 Epoch 90/100 100/100 [==============================] - ETA: 0s - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0766 Epoch 90: val_loss did not improve from 0.01677 100/100 [==============================] - 6s 62ms/step - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0766 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0723 Epoch 91/100 100/100 [==============================] - ETA: 0s - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0766 Epoch 91: val_loss did not improve from 0.01677 100/100 [==============================] - 6s 61ms/step - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.0766 - val_loss: 0.0168 - val_mean_squared_error: 0.0168 - val_mean_absolute_error: 0.0663 Epoch 92/100 100/100 [==============================] - ETA: 0s - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0768 Epoch 92: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 66ms/step - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0768 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0723 Epoch 93/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0757 Epoch 93: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 85ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0757 - val_loss: 0.0170 - val_mean_squared_error: 0.0170 - val_mean_absolute_error: 0.0698 Epoch 94/100 100/100 [==============================] - ETA: 0s - loss: 0.0189 - mean_squared_error: 0.0189 - mean_absolute_error: 0.0766 Epoch 94: val_loss did not improve from 0.01677 100/100 [==============================] - 10s 99ms/step - loss: 0.0189 - mean_squared_error: 0.0189 - mean_absolute_error: 0.0766 - val_loss: 0.0168 - val_mean_squared_error: 0.0168 - val_mean_absolute_error: 0.0672 Epoch 95/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0758 Epoch 95: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 73ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0758 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.0767 Epoch 96/100 100/100 [==============================] - ETA: 0s - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0769 Epoch 96: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 74ms/step - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0769 - val_loss: 0.0177 - val_mean_squared_error: 0.0177 - val_mean_absolute_error: 0.0780 Epoch 97/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0767 Epoch 97: val_loss did not improve from 0.01677 100/100 [==============================] - 7s 74ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0767 - val_loss: 0.0169 - val_mean_squared_error: 0.0169 - val_mean_absolute_error: 0.0680 Epoch 98/100 100/100 [==============================] - ETA: 0s - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.0761 Epoch 98: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 86ms/step - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.0761 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0716 Epoch 99/100 100/100 [==============================] - ETA: 0s - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0772 Epoch 99: val_loss did not improve from 0.01677 100/100 [==============================] - 8s 80ms/step - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.0772 - val_loss: 0.0173 - val_mean_squared_error: 0.0173 - val_mean_absolute_error: 0.0660 Epoch 100/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0768 Epoch 100: val_loss did not improve from 0.01677 100/100 [==============================] - 9s 85ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.0768 - val_loss: 0.0171 - val_mean_squared_error: 0.0171 - val_mean_absolute_error: 0.0687
model_evaluate_and_plot(model_sm2,history_sm2,X_test2,y_test2)
32/32 [==============================] - 1s 36ms/step - loss: 0.0217 - mean_squared_error: 0.0217 - mean_absolute_error: 0.0755 Loss: 0.021685738116502762 Mean Square Error: 0.021685738116502762 Mean Absolute Error: 0.07547677308320999 32/32 [==============================] - 1s 35ms/step Test R2 score: 0.7609342328959625
y_pred = model_sm2.predict(X_test2)
r2scores = [ r2_score(y_test2[i], y_pred[i]) for i in range(100) ]
sns.barplot(x=np.arange(100), y=r2scores)
bad_data=X_test2[np.where(np.array(r2scores) < 0)]
np.where(np.array(r2scores) < 0)
32/32 [==============================] - 1s 42ms/step
(array([ 5, 11, 25, 27, 29, 31, 42, 43, 64, 71, 72, 73, 91, 94, 98, 99]),)
bad_y_test=y_test2[np.where(np.array(r2scores) < 0)]
plt.hist(bad_y_test.flatten())
(array([ 8., 13., 33., 37., 46., 29., 37., 26., 10., 1.]), array([-0.611606 , -0.4742871, -0.3369682, -0.1996493, -0.0623304, 0.0749885, 0.2123074, 0.3496263, 0.4869452, 0.6242641, 0.761583 ]), <BarContainer object of 10 artists>)
np.shape(bad_data.reshape(16,64,64))
(16, 64, 64)
fig = px.imshow(bad_data.reshape(16,64,64), binary_string=True, animation_frame=0, zmax=4)
fig.show()
plt.imshow(bad_data.reshape(16,64,64)[2],cmap='gray')
<matplotlib.image.AxesImage at 0x7f2643c9e890>
X_train3a, X_test3a, y_train3a, y_test3a = train_test_split(X3a, y3a, random_state=42,test_size=0.2)
X_train3a=np.expand_dims(X_train3a, -1)
X_test3a=np.expand_dims(X_test3a, -1)
print(np.shape(X_train3a),type(X_train3a))
print(np.shape(X_test3a),type(X_test3a))
print(np.shape(y_train3a),type(y_train3a))
print(np.shape(y_test3a),type(y_test3a))
(800, 64, 64, 1) <class 'numpy.ndarray'> (200, 64, 64, 1) <class 'numpy.ndarray'> (800, 15) <class 'numpy.ndarray'> (200, 15) <class 'numpy.ndarray'>
# build and compile a new model
model_sm3a=construct_new_small_cfs_model(15)
batch_size = 32
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_sm_X3a.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
# optionally Load saved weights into the model
# model.load_weights('cfs4_sm_X3a.h5')
model_sm3a.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
# begin training
history_sm3a =model_sm3a.fit(X_train3a,y_train3a,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 19/20 [===========================>..] - ETA: 0s - loss: 12.6087 - mean_squared_error: 12.6087 - mean_absolute_error: 2.6580 Epoch 1: val_loss improved from inf to 0.20065, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 75ms/step - loss: 12.5022 - mean_squared_error: 12.5022 - mean_absolute_error: 2.6496 - val_loss: 0.2007 - val_mean_squared_error: 0.2007 - val_mean_absolute_error: 0.3450 Epoch 2/100 19/20 [===========================>..] - ETA: 0s - loss: 8.9825 - mean_squared_error: 8.9825 - mean_absolute_error: 2.2475 Epoch 2: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 62ms/step - loss: 8.9625 - mean_squared_error: 8.9625 - mean_absolute_error: 2.2494 - val_loss: 0.2622 - val_mean_squared_error: 0.2622 - val_mean_absolute_error: 0.3903 Epoch 3/100 20/20 [==============================] - ETA: 0s - loss: 7.9135 - mean_squared_error: 7.9135 - mean_absolute_error: 2.1079 Epoch 3: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 69ms/step - loss: 7.9135 - mean_squared_error: 7.9135 - mean_absolute_error: 2.1079 - val_loss: 0.2448 - val_mean_squared_error: 0.2448 - val_mean_absolute_error: 0.3782 Epoch 4/100 19/20 [===========================>..] - ETA: 0s - loss: 6.8460 - mean_squared_error: 6.8460 - mean_absolute_error: 1.9747 Epoch 4: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 64ms/step - loss: 6.8383 - mean_squared_error: 6.8383 - mean_absolute_error: 1.9784 - val_loss: 0.3308 - val_mean_squared_error: 0.3308 - val_mean_absolute_error: 0.4389 Epoch 5/100 20/20 [==============================] - ETA: 0s - loss: 5.8864 - mean_squared_error: 5.8864 - mean_absolute_error: 1.8409 Epoch 5: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 64ms/step - loss: 5.8864 - mean_squared_error: 5.8864 - mean_absolute_error: 1.8409 - val_loss: 0.2357 - val_mean_squared_error: 0.2357 - val_mean_absolute_error: 0.3786 Epoch 6/100 20/20 [==============================] - ETA: 0s - loss: 5.0067 - mean_squared_error: 5.0067 - mean_absolute_error: 1.7015 Epoch 6: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 66ms/step - loss: 5.0067 - mean_squared_error: 5.0067 - mean_absolute_error: 1.7015 - val_loss: 0.2491 - val_mean_squared_error: 0.2491 - val_mean_absolute_error: 0.3814 Epoch 7/100 20/20 [==============================] - ETA: 0s - loss: 4.6137 - mean_squared_error: 4.6137 - mean_absolute_error: 1.6460 Epoch 7: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 59ms/step - loss: 4.6137 - mean_squared_error: 4.6137 - mean_absolute_error: 1.6460 - val_loss: 0.2539 - val_mean_squared_error: 0.2539 - val_mean_absolute_error: 0.3913 Epoch 8/100 20/20 [==============================] - ETA: 0s - loss: 4.2663 - mean_squared_error: 4.2663 - mean_absolute_error: 1.5733 Epoch 8: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 63ms/step - loss: 4.2663 - mean_squared_error: 4.2663 - mean_absolute_error: 1.5733 - val_loss: 0.2771 - val_mean_squared_error: 0.2771 - val_mean_absolute_error: 0.4062 Epoch 9/100 20/20 [==============================] - ETA: 0s - loss: 3.9600 - mean_squared_error: 3.9600 - mean_absolute_error: 1.5264 Epoch 9: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 65ms/step - loss: 3.9600 - mean_squared_error: 3.9600 - mean_absolute_error: 1.5264 - val_loss: 0.2897 - val_mean_squared_error: 0.2897 - val_mean_absolute_error: 0.4179 Epoch 10/100 20/20 [==============================] - ETA: 0s - loss: 3.8948 - mean_squared_error: 3.8948 - mean_absolute_error: 1.5132 Epoch 10: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 67ms/step - loss: 3.8948 - mean_squared_error: 3.8948 - mean_absolute_error: 1.5132 - val_loss: 0.2999 - val_mean_squared_error: 0.2999 - val_mean_absolute_error: 0.4213 Epoch 11/100 20/20 [==============================] - ETA: 0s - loss: 3.4074 - mean_squared_error: 3.4074 - mean_absolute_error: 1.4250 Epoch 11: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 65ms/step - loss: 3.4074 - mean_squared_error: 3.4074 - mean_absolute_error: 1.4250 - val_loss: 0.2753 - val_mean_squared_error: 0.2753 - val_mean_absolute_error: 0.4028 Epoch 12/100 20/20 [==============================] - ETA: 0s - loss: 3.2015 - mean_squared_error: 3.2015 - mean_absolute_error: 1.3727 Epoch 12: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 72ms/step - loss: 3.2015 - mean_squared_error: 3.2015 - mean_absolute_error: 1.3727 - val_loss: 0.3144 - val_mean_squared_error: 0.3144 - val_mean_absolute_error: 0.4321 Epoch 13/100 20/20 [==============================] - ETA: 0s - loss: 2.9626 - mean_squared_error: 2.9626 - mean_absolute_error: 1.3188 Epoch 13: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 74ms/step - loss: 2.9626 - mean_squared_error: 2.9626 - mean_absolute_error: 1.3188 - val_loss: 0.3965 - val_mean_squared_error: 0.3965 - val_mean_absolute_error: 0.4851 Epoch 14/100 20/20 [==============================] - ETA: 0s - loss: 2.9902 - mean_squared_error: 2.9902 - mean_absolute_error: 1.3159 Epoch 14: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 72ms/step - loss: 2.9902 - mean_squared_error: 2.9902 - mean_absolute_error: 1.3159 - val_loss: 0.3645 - val_mean_squared_error: 0.3645 - val_mean_absolute_error: 0.4569 Epoch 15/100 20/20 [==============================] - ETA: 0s - loss: 2.5796 - mean_squared_error: 2.5796 - mean_absolute_error: 1.2236 Epoch 15: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 65ms/step - loss: 2.5796 - mean_squared_error: 2.5796 - mean_absolute_error: 1.2236 - val_loss: 0.4211 - val_mean_squared_error: 0.4211 - val_mean_absolute_error: 0.4927 Epoch 16/100 20/20 [==============================] - ETA: 0s - loss: 2.3742 - mean_squared_error: 2.3742 - mean_absolute_error: 1.1864 Epoch 16: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 66ms/step - loss: 2.3742 - mean_squared_error: 2.3742 - mean_absolute_error: 1.1864 - val_loss: 0.3965 - val_mean_squared_error: 0.3965 - val_mean_absolute_error: 0.4855 Epoch 17/100 20/20 [==============================] - ETA: 0s - loss: 2.2139 - mean_squared_error: 2.2139 - mean_absolute_error: 1.1516 Epoch 17: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 65ms/step - loss: 2.2139 - mean_squared_error: 2.2139 - mean_absolute_error: 1.1516 - val_loss: 0.3104 - val_mean_squared_error: 0.3104 - val_mean_absolute_error: 0.4293 Epoch 18/100 20/20 [==============================] - ETA: 0s - loss: 2.0888 - mean_squared_error: 2.0888 - mean_absolute_error: 1.1150 Epoch 18: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 67ms/step - loss: 2.0888 - mean_squared_error: 2.0888 - mean_absolute_error: 1.1150 - val_loss: 0.3350 - val_mean_squared_error: 0.3350 - val_mean_absolute_error: 0.4498 Epoch 19/100 20/20 [==============================] - ETA: 0s - loss: 1.9145 - mean_squared_error: 1.9145 - mean_absolute_error: 1.0637 Epoch 19: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 69ms/step - loss: 1.9145 - mean_squared_error: 1.9145 - mean_absolute_error: 1.0637 - val_loss: 0.3526 - val_mean_squared_error: 0.3526 - val_mean_absolute_error: 0.4624 Epoch 20/100 20/20 [==============================] - ETA: 0s - loss: 1.8600 - mean_squared_error: 1.8600 - mean_absolute_error: 1.0486 Epoch 20: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 64ms/step - loss: 1.8600 - mean_squared_error: 1.8600 - mean_absolute_error: 1.0486 - val_loss: 0.3424 - val_mean_squared_error: 0.3424 - val_mean_absolute_error: 0.4555 Epoch 21/100 20/20 [==============================] - ETA: 0s - loss: 1.7587 - mean_squared_error: 1.7587 - mean_absolute_error: 1.0255 Epoch 21: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 66ms/step - loss: 1.7587 - mean_squared_error: 1.7587 - mean_absolute_error: 1.0255 - val_loss: 0.4440 - val_mean_squared_error: 0.4440 - val_mean_absolute_error: 0.5154 Epoch 22/100 20/20 [==============================] - ETA: 0s - loss: 1.6859 - mean_squared_error: 1.6859 - mean_absolute_error: 1.0049 Epoch 22: val_loss did not improve from 0.20065 20/20 [==============================] - 1s 72ms/step - loss: 1.6859 - mean_squared_error: 1.6859 - mean_absolute_error: 1.0049 - val_loss: 0.3361 - val_mean_squared_error: 0.3361 - val_mean_absolute_error: 0.4460 Epoch 23/100 20/20 [==============================] - ETA: 0s - loss: 1.4623 - mean_squared_error: 1.4623 - mean_absolute_error: 0.9373 Epoch 23: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 78ms/step - loss: 1.4623 - mean_squared_error: 1.4623 - mean_absolute_error: 0.9373 - val_loss: 0.3587 - val_mean_squared_error: 0.3587 - val_mean_absolute_error: 0.4556 Epoch 24/100 20/20 [==============================] - ETA: 0s - loss: 1.4575 - mean_squared_error: 1.4575 - mean_absolute_error: 0.9261 Epoch 24: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 91ms/step - loss: 1.4575 - mean_squared_error: 1.4575 - mean_absolute_error: 0.9261 - val_loss: 0.2813 - val_mean_squared_error: 0.2813 - val_mean_absolute_error: 0.4106 Epoch 25/100 20/20 [==============================] - ETA: 0s - loss: 1.3216 - mean_squared_error: 1.3216 - mean_absolute_error: 0.8888 Epoch 25: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 89ms/step - loss: 1.3216 - mean_squared_error: 1.3216 - mean_absolute_error: 0.8888 - val_loss: 0.2624 - val_mean_squared_error: 0.2624 - val_mean_absolute_error: 0.3938 Epoch 26/100 20/20 [==============================] - ETA: 0s - loss: 1.2463 - mean_squared_error: 1.2463 - mean_absolute_error: 0.8628 Epoch 26: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 89ms/step - loss: 1.2463 - mean_squared_error: 1.2463 - mean_absolute_error: 0.8628 - val_loss: 0.3432 - val_mean_squared_error: 0.3432 - val_mean_absolute_error: 0.4406 Epoch 27/100 20/20 [==============================] - ETA: 0s - loss: 1.1979 - mean_squared_error: 1.1979 - mean_absolute_error: 0.8406 Epoch 27: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 76ms/step - loss: 1.1979 - mean_squared_error: 1.1979 - mean_absolute_error: 0.8406 - val_loss: 0.3031 - val_mean_squared_error: 0.3031 - val_mean_absolute_error: 0.4261 Epoch 28/100 20/20 [==============================] - ETA: 0s - loss: 1.1131 - mean_squared_error: 1.1131 - mean_absolute_error: 0.8168 Epoch 28: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 91ms/step - loss: 1.1131 - mean_squared_error: 1.1131 - mean_absolute_error: 0.8168 - val_loss: 0.2517 - val_mean_squared_error: 0.2517 - val_mean_absolute_error: 0.3912 Epoch 29/100 20/20 [==============================] - ETA: 0s - loss: 1.0761 - mean_squared_error: 1.0761 - mean_absolute_error: 0.7980 Epoch 29: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 87ms/step - loss: 1.0761 - mean_squared_error: 1.0761 - mean_absolute_error: 0.7980 - val_loss: 0.2976 - val_mean_squared_error: 0.2976 - val_mean_absolute_error: 0.4210 Epoch 30/100 20/20 [==============================] - ETA: 0s - loss: 1.0191 - mean_squared_error: 1.0191 - mean_absolute_error: 0.7764 Epoch 30: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 93ms/step - loss: 1.0191 - mean_squared_error: 1.0191 - mean_absolute_error: 0.7764 - val_loss: 0.2945 - val_mean_squared_error: 0.2945 - val_mean_absolute_error: 0.4223 Epoch 31/100 20/20 [==============================] - ETA: 0s - loss: 0.9616 - mean_squared_error: 0.9616 - mean_absolute_error: 0.7545 Epoch 31: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 97ms/step - loss: 0.9616 - mean_squared_error: 0.9616 - mean_absolute_error: 0.7545 - val_loss: 0.2505 - val_mean_squared_error: 0.2505 - val_mean_absolute_error: 0.3904 Epoch 32/100 20/20 [==============================] - ETA: 0s - loss: 0.9148 - mean_squared_error: 0.9148 - mean_absolute_error: 0.7379 Epoch 32: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 81ms/step - loss: 0.9148 - mean_squared_error: 0.9148 - mean_absolute_error: 0.7379 - val_loss: 0.2030 - val_mean_squared_error: 0.2030 - val_mean_absolute_error: 0.3531 Epoch 33/100 20/20 [==============================] - ETA: 0s - loss: 0.8697 - mean_squared_error: 0.8697 - mean_absolute_error: 0.7186 Epoch 33: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 111ms/step - loss: 0.8697 - mean_squared_error: 0.8697 - mean_absolute_error: 0.7186 - val_loss: 0.2159 - val_mean_squared_error: 0.2159 - val_mean_absolute_error: 0.3503 Epoch 34/100 20/20 [==============================] - ETA: 0s - loss: 0.8209 - mean_squared_error: 0.8209 - mean_absolute_error: 0.6983 Epoch 34: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 106ms/step - loss: 0.8209 - mean_squared_error: 0.8209 - mean_absolute_error: 0.6983 - val_loss: 0.2117 - val_mean_squared_error: 0.2117 - val_mean_absolute_error: 0.3532 Epoch 35/100 20/20 [==============================] - ETA: 0s - loss: 0.8001 - mean_squared_error: 0.8001 - mean_absolute_error: 0.6881 Epoch 35: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 105ms/step - loss: 0.8001 - mean_squared_error: 0.8001 - mean_absolute_error: 0.6881 - val_loss: 0.2295 - val_mean_squared_error: 0.2295 - val_mean_absolute_error: 0.3622 Epoch 36/100 20/20 [==============================] - ETA: 0s - loss: 0.7824 - mean_squared_error: 0.7824 - mean_absolute_error: 0.6812 Epoch 36: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 102ms/step - loss: 0.7824 - mean_squared_error: 0.7824 - mean_absolute_error: 0.6812 - val_loss: 0.2250 - val_mean_squared_error: 0.2250 - val_mean_absolute_error: 0.3616 Epoch 37/100 20/20 [==============================] - ETA: 0s - loss: 0.7009 - mean_squared_error: 0.7009 - mean_absolute_error: 0.6464 Epoch 37: val_loss did not improve from 0.20065 20/20 [==============================] - 2s 112ms/step - loss: 0.7009 - mean_squared_error: 0.7009 - mean_absolute_error: 0.6464 - val_loss: 0.2113 - val_mean_squared_error: 0.2113 - val_mean_absolute_error: 0.3455 Epoch 38/100 20/20 [==============================] - ETA: 0s - loss: 0.6674 - mean_squared_error: 0.6674 - mean_absolute_error: 0.6331 Epoch 38: val_loss improved from 0.20065 to 0.15232, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 109ms/step - loss: 0.6674 - mean_squared_error: 0.6674 - mean_absolute_error: 0.6331 - val_loss: 0.1523 - val_mean_squared_error: 0.1523 - val_mean_absolute_error: 0.3041 Epoch 39/100 20/20 [==============================] - ETA: 0s - loss: 0.6490 - mean_squared_error: 0.6490 - mean_absolute_error: 0.6239 Epoch 39: val_loss did not improve from 0.15232 20/20 [==============================] - 2s 90ms/step - loss: 0.6490 - mean_squared_error: 0.6490 - mean_absolute_error: 0.6239 - val_loss: 0.1661 - val_mean_squared_error: 0.1661 - val_mean_absolute_error: 0.3137 Epoch 40/100 20/20 [==============================] - ETA: 0s - loss: 0.6082 - mean_squared_error: 0.6082 - mean_absolute_error: 0.6022 Epoch 40: val_loss improved from 0.15232 to 0.13416, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 75ms/step - loss: 0.6082 - mean_squared_error: 0.6082 - mean_absolute_error: 0.6022 - val_loss: 0.1342 - val_mean_squared_error: 0.1342 - val_mean_absolute_error: 0.2834 Epoch 41/100 20/20 [==============================] - ETA: 0s - loss: 0.5839 - mean_squared_error: 0.5839 - mean_absolute_error: 0.5868 Epoch 41: val_loss did not improve from 0.13416 20/20 [==============================] - 1s 71ms/step - loss: 0.5839 - mean_squared_error: 0.5839 - mean_absolute_error: 0.5868 - val_loss: 0.1554 - val_mean_squared_error: 0.1554 - val_mean_absolute_error: 0.3018 Epoch 42/100 20/20 [==============================] - ETA: 0s - loss: 0.5415 - mean_squared_error: 0.5415 - mean_absolute_error: 0.5697 Epoch 42: val_loss did not improve from 0.13416 20/20 [==============================] - 2s 77ms/step - loss: 0.5415 - mean_squared_error: 0.5415 - mean_absolute_error: 0.5697 - val_loss: 0.1516 - val_mean_squared_error: 0.1516 - val_mean_absolute_error: 0.2989 Epoch 43/100 20/20 [==============================] - ETA: 0s - loss: 0.5578 - mean_squared_error: 0.5578 - mean_absolute_error: 0.5768 Epoch 43: val_loss did not improve from 0.13416 20/20 [==============================] - 2s 76ms/step - loss: 0.5578 - mean_squared_error: 0.5578 - mean_absolute_error: 0.5768 - val_loss: 0.1429 - val_mean_squared_error: 0.1429 - val_mean_absolute_error: 0.2941 Epoch 44/100 20/20 [==============================] - ETA: 0s - loss: 0.5125 - mean_squared_error: 0.5125 - mean_absolute_error: 0.5539 Epoch 44: val_loss did not improve from 0.13416 20/20 [==============================] - 1s 72ms/step - loss: 0.5125 - mean_squared_error: 0.5125 - mean_absolute_error: 0.5539 - val_loss: 0.1462 - val_mean_squared_error: 0.1462 - val_mean_absolute_error: 0.2873 Epoch 45/100 20/20 [==============================] - ETA: 0s - loss: 0.4980 - mean_squared_error: 0.4980 - mean_absolute_error: 0.5451 Epoch 45: val_loss improved from 0.13416 to 0.12705, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.4980 - mean_squared_error: 0.4980 - mean_absolute_error: 0.5451 - val_loss: 0.1270 - val_mean_squared_error: 0.1270 - val_mean_absolute_error: 0.2696 Epoch 46/100 20/20 [==============================] - ETA: 0s - loss: 0.4567 - mean_squared_error: 0.4567 - mean_absolute_error: 0.5195 Epoch 46: val_loss improved from 0.12705 to 0.09819, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.4567 - mean_squared_error: 0.4567 - mean_absolute_error: 0.5195 - val_loss: 0.0982 - val_mean_squared_error: 0.0982 - val_mean_absolute_error: 0.2389 Epoch 47/100 20/20 [==============================] - ETA: 0s - loss: 0.4412 - mean_squared_error: 0.4412 - mean_absolute_error: 0.5124 Epoch 47: val_loss improved from 0.09819 to 0.09652, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 72ms/step - loss: 0.4412 - mean_squared_error: 0.4412 - mean_absolute_error: 0.5124 - val_loss: 0.0965 - val_mean_squared_error: 0.0965 - val_mean_absolute_error: 0.2376 Epoch 48/100 20/20 [==============================] - ETA: 0s - loss: 0.4267 - mean_squared_error: 0.4267 - mean_absolute_error: 0.5047 Epoch 48: val_loss did not improve from 0.09652 20/20 [==============================] - 1s 72ms/step - loss: 0.4267 - mean_squared_error: 0.4267 - mean_absolute_error: 0.5047 - val_loss: 0.1020 - val_mean_squared_error: 0.1020 - val_mean_absolute_error: 0.2431 Epoch 49/100 20/20 [==============================] - ETA: 0s - loss: 0.3965 - mean_squared_error: 0.3965 - mean_absolute_error: 0.4818 Epoch 49: val_loss improved from 0.09652 to 0.09183, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 75ms/step - loss: 0.3965 - mean_squared_error: 0.3965 - mean_absolute_error: 0.4818 - val_loss: 0.0918 - val_mean_squared_error: 0.0918 - val_mean_absolute_error: 0.2291 Epoch 50/100 20/20 [==============================] - ETA: 0s - loss: 0.3947 - mean_squared_error: 0.3947 - mean_absolute_error: 0.4870 Epoch 50: val_loss did not improve from 0.09183 20/20 [==============================] - 2s 76ms/step - loss: 0.3947 - mean_squared_error: 0.3947 - mean_absolute_error: 0.4870 - val_loss: 0.1125 - val_mean_squared_error: 0.1125 - val_mean_absolute_error: 0.2581 Epoch 51/100 20/20 [==============================] - ETA: 0s - loss: 0.3842 - mean_squared_error: 0.3842 - mean_absolute_error: 0.4763 Epoch 51: val_loss did not improve from 0.09183 20/20 [==============================] - 1s 69ms/step - loss: 0.3842 - mean_squared_error: 0.3842 - mean_absolute_error: 0.4763 - val_loss: 0.1073 - val_mean_squared_error: 0.1073 - val_mean_absolute_error: 0.2513 Epoch 52/100 20/20 [==============================] - ETA: 0s - loss: 0.3649 - mean_squared_error: 0.3649 - mean_absolute_error: 0.4678 Epoch 52: val_loss did not improve from 0.09183 20/20 [==============================] - 2s 84ms/step - loss: 0.3649 - mean_squared_error: 0.3649 - mean_absolute_error: 0.4678 - val_loss: 0.0988 - val_mean_squared_error: 0.0988 - val_mean_absolute_error: 0.2396 Epoch 53/100 20/20 [==============================] - ETA: 0s - loss: 0.3546 - mean_squared_error: 0.3546 - mean_absolute_error: 0.4594 Epoch 53: val_loss improved from 0.09183 to 0.08807, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 79ms/step - loss: 0.3546 - mean_squared_error: 0.3546 - mean_absolute_error: 0.4594 - val_loss: 0.0881 - val_mean_squared_error: 0.0881 - val_mean_absolute_error: 0.2280 Epoch 54/100 20/20 [==============================] - ETA: 0s - loss: 0.3415 - mean_squared_error: 0.3415 - mean_absolute_error: 0.4519 Epoch 54: val_loss improved from 0.08807 to 0.07930, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 82ms/step - loss: 0.3415 - mean_squared_error: 0.3415 - mean_absolute_error: 0.4519 - val_loss: 0.0793 - val_mean_squared_error: 0.0793 - val_mean_absolute_error: 0.2149 Epoch 55/100 20/20 [==============================] - ETA: 0s - loss: 0.3177 - mean_squared_error: 0.3177 - mean_absolute_error: 0.4357 Epoch 55: val_loss did not improve from 0.07930 20/20 [==============================] - 1s 69ms/step - loss: 0.3177 - mean_squared_error: 0.3177 - mean_absolute_error: 0.4357 - val_loss: 0.0867 - val_mean_squared_error: 0.0867 - val_mean_absolute_error: 0.2262 Epoch 56/100 20/20 [==============================] - ETA: 0s - loss: 0.3167 - mean_squared_error: 0.3167 - mean_absolute_error: 0.4339 Epoch 56: val_loss improved from 0.07930 to 0.07014, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 80ms/step - loss: 0.3167 - mean_squared_error: 0.3167 - mean_absolute_error: 0.4339 - val_loss: 0.0701 - val_mean_squared_error: 0.0701 - val_mean_absolute_error: 0.2043 Epoch 57/100 20/20 [==============================] - ETA: 0s - loss: 0.2984 - mean_squared_error: 0.2984 - mean_absolute_error: 0.4197 Epoch 57: val_loss improved from 0.07014 to 0.07009, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 83ms/step - loss: 0.2984 - mean_squared_error: 0.2984 - mean_absolute_error: 0.4197 - val_loss: 0.0701 - val_mean_squared_error: 0.0701 - val_mean_absolute_error: 0.2014 Epoch 58/100 20/20 [==============================] - ETA: 0s - loss: 0.2887 - mean_squared_error: 0.2887 - mean_absolute_error: 0.4145 Epoch 58: val_loss did not improve from 0.07009 20/20 [==============================] - 1s 73ms/step - loss: 0.2887 - mean_squared_error: 0.2887 - mean_absolute_error: 0.4145 - val_loss: 0.0799 - val_mean_squared_error: 0.0799 - val_mean_absolute_error: 0.2150 Epoch 59/100 20/20 [==============================] - ETA: 0s - loss: 0.2768 - mean_squared_error: 0.2768 - mean_absolute_error: 0.4081 Epoch 59: val_loss improved from 0.07009 to 0.06346, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 75ms/step - loss: 0.2768 - mean_squared_error: 0.2768 - mean_absolute_error: 0.4081 - val_loss: 0.0635 - val_mean_squared_error: 0.0635 - val_mean_absolute_error: 0.1956 Epoch 60/100 20/20 [==============================] - ETA: 0s - loss: 0.2612 - mean_squared_error: 0.2612 - mean_absolute_error: 0.3967 Epoch 60: val_loss did not improve from 0.06346 20/20 [==============================] - 2s 82ms/step - loss: 0.2612 - mean_squared_error: 0.2612 - mean_absolute_error: 0.3967 - val_loss: 0.0637 - val_mean_squared_error: 0.0637 - val_mean_absolute_error: 0.1958 Epoch 61/100 20/20 [==============================] - ETA: 0s - loss: 0.2457 - mean_squared_error: 0.2457 - mean_absolute_error: 0.3839 Epoch 61: val_loss improved from 0.06346 to 0.05526, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 79ms/step - loss: 0.2457 - mean_squared_error: 0.2457 - mean_absolute_error: 0.3839 - val_loss: 0.0553 - val_mean_squared_error: 0.0553 - val_mean_absolute_error: 0.1797 Epoch 62/100 20/20 [==============================] - ETA: 0s - loss: 0.2276 - mean_squared_error: 0.2276 - mean_absolute_error: 0.3698 Epoch 62: val_loss did not improve from 0.05526 20/20 [==============================] - 1s 75ms/step - loss: 0.2276 - mean_squared_error: 0.2276 - mean_absolute_error: 0.3698 - val_loss: 0.0617 - val_mean_squared_error: 0.0617 - val_mean_absolute_error: 0.1875 Epoch 63/100 19/20 [===========================>..] - ETA: 0s - loss: 0.2323 - mean_squared_error: 0.2323 - mean_absolute_error: 0.3744 Epoch 63: val_loss improved from 0.05526 to 0.05451, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 38ms/step - loss: 0.2320 - mean_squared_error: 0.2320 - mean_absolute_error: 0.3745 - val_loss: 0.0545 - val_mean_squared_error: 0.0545 - val_mean_absolute_error: 0.1805 Epoch 64/100 19/20 [===========================>..] - ETA: 0s - loss: 0.2190 - mean_squared_error: 0.2190 - mean_absolute_error: 0.3616 Epoch 64: val_loss improved from 0.05451 to 0.05167, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 34ms/step - loss: 0.2184 - mean_squared_error: 0.2184 - mean_absolute_error: 0.3610 - val_loss: 0.0517 - val_mean_squared_error: 0.0517 - val_mean_absolute_error: 0.1741 Epoch 65/100 19/20 [===========================>..] - ETA: 0s - loss: 0.2103 - mean_squared_error: 0.2103 - mean_absolute_error: 0.3547 Epoch 65: val_loss improved from 0.05167 to 0.03921, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 34ms/step - loss: 0.2106 - mean_squared_error: 0.2106 - mean_absolute_error: 0.3552 - val_loss: 0.0392 - val_mean_squared_error: 0.0392 - val_mean_absolute_error: 0.1518 Epoch 66/100 19/20 [===========================>..] - ETA: 0s - loss: 0.2022 - mean_squared_error: 0.2022 - mean_absolute_error: 0.3485 Epoch 66: val_loss did not improve from 0.03921 20/20 [==============================] - 1s 31ms/step - loss: 0.2031 - mean_squared_error: 0.2031 - mean_absolute_error: 0.3493 - val_loss: 0.0489 - val_mean_squared_error: 0.0489 - val_mean_absolute_error: 0.1727 Epoch 67/100 20/20 [==============================] - ETA: 0s - loss: 0.2026 - mean_squared_error: 0.2026 - mean_absolute_error: 0.3479 Epoch 67: val_loss did not improve from 0.03921 20/20 [==============================] - 1s 30ms/step - loss: 0.2026 - mean_squared_error: 0.2026 - mean_absolute_error: 0.3479 - val_loss: 0.0505 - val_mean_squared_error: 0.0505 - val_mean_absolute_error: 0.1726 Epoch 68/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1888 - mean_squared_error: 0.1888 - mean_absolute_error: 0.3364 Epoch 68: val_loss improved from 0.03921 to 0.03547, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 32ms/step - loss: 0.1889 - mean_squared_error: 0.1889 - mean_absolute_error: 0.3365 - val_loss: 0.0355 - val_mean_squared_error: 0.0355 - val_mean_absolute_error: 0.1457 Epoch 69/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1883 - mean_squared_error: 0.1883 - mean_absolute_error: 0.3355 Epoch 69: val_loss did not improve from 0.03547 20/20 [==============================] - 1s 32ms/step - loss: 0.1886 - mean_squared_error: 0.1886 - mean_absolute_error: 0.3358 - val_loss: 0.0407 - val_mean_squared_error: 0.0407 - val_mean_absolute_error: 0.1546 Epoch 70/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1740 - mean_squared_error: 0.1740 - mean_absolute_error: 0.3234 Epoch 70: val_loss improved from 0.03547 to 0.03262, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 33ms/step - loss: 0.1741 - mean_squared_error: 0.1741 - mean_absolute_error: 0.3233 - val_loss: 0.0326 - val_mean_squared_error: 0.0326 - val_mean_absolute_error: 0.1376 Epoch 71/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1709 - mean_squared_error: 0.1709 - mean_absolute_error: 0.3218 Epoch 71: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 32ms/step - loss: 0.1712 - mean_squared_error: 0.1712 - mean_absolute_error: 0.3222 - val_loss: 0.0465 - val_mean_squared_error: 0.0465 - val_mean_absolute_error: 0.1613 Epoch 72/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1659 - mean_squared_error: 0.1659 - mean_absolute_error: 0.3162 Epoch 72: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 31ms/step - loss: 0.1655 - mean_squared_error: 0.1655 - mean_absolute_error: 0.3152 - val_loss: 0.0372 - val_mean_squared_error: 0.0372 - val_mean_absolute_error: 0.1455 Epoch 73/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1539 - mean_squared_error: 0.1539 - mean_absolute_error: 0.3022 Epoch 73: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 39ms/step - loss: 0.1547 - mean_squared_error: 0.1547 - mean_absolute_error: 0.3030 - val_loss: 0.0429 - val_mean_squared_error: 0.0429 - val_mean_absolute_error: 0.1586 Epoch 74/100 20/20 [==============================] - ETA: 0s - loss: 0.1540 - mean_squared_error: 0.1540 - mean_absolute_error: 0.3030 Epoch 74: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 69ms/step - loss: 0.1540 - mean_squared_error: 0.1540 - mean_absolute_error: 0.3030 - val_loss: 0.0334 - val_mean_squared_error: 0.0334 - val_mean_absolute_error: 0.1392 Epoch 75/100 20/20 [==============================] - ETA: 0s - loss: 0.1483 - mean_squared_error: 0.1483 - mean_absolute_error: 0.2993 Epoch 75: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 68ms/step - loss: 0.1483 - mean_squared_error: 0.1483 - mean_absolute_error: 0.2993 - val_loss: 0.0382 - val_mean_squared_error: 0.0382 - val_mean_absolute_error: 0.1487 Epoch 76/100 20/20 [==============================] - ETA: 0s - loss: 0.1471 - mean_squared_error: 0.1471 - mean_absolute_error: 0.2985 Epoch 76: val_loss did not improve from 0.03262 20/20 [==============================] - 1s 70ms/step - loss: 0.1471 - mean_squared_error: 0.1471 - mean_absolute_error: 0.2985 - val_loss: 0.0385 - val_mean_squared_error: 0.0385 - val_mean_absolute_error: 0.1484 Epoch 77/100 20/20 [==============================] - ETA: 0s - loss: 0.1420 - mean_squared_error: 0.1420 - mean_absolute_error: 0.2904 Epoch 77: val_loss improved from 0.03262 to 0.02960, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 68ms/step - loss: 0.1420 - mean_squared_error: 0.1420 - mean_absolute_error: 0.2904 - val_loss: 0.0296 - val_mean_squared_error: 0.0296 - val_mean_absolute_error: 0.1329 Epoch 78/100 20/20 [==============================] - ETA: 0s - loss: 0.1328 - mean_squared_error: 0.1328 - mean_absolute_error: 0.2813 Epoch 78: val_loss improved from 0.02960 to 0.02470, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 95ms/step - loss: 0.1328 - mean_squared_error: 0.1328 - mean_absolute_error: 0.2813 - val_loss: 0.0247 - val_mean_squared_error: 0.0247 - val_mean_absolute_error: 0.1215 Epoch 79/100 20/20 [==============================] - ETA: 0s - loss: 0.1287 - mean_squared_error: 0.1287 - mean_absolute_error: 0.2790 Epoch 79: val_loss did not improve from 0.02470 20/20 [==============================] - 1s 74ms/step - loss: 0.1287 - mean_squared_error: 0.1287 - mean_absolute_error: 0.2790 - val_loss: 0.0302 - val_mean_squared_error: 0.0302 - val_mean_absolute_error: 0.1343 Epoch 80/100 20/20 [==============================] - ETA: 0s - loss: 0.1203 - mean_squared_error: 0.1203 - mean_absolute_error: 0.2691 Epoch 80: val_loss did not improve from 0.02470 20/20 [==============================] - 2s 91ms/step - loss: 0.1203 - mean_squared_error: 0.1203 - mean_absolute_error: 0.2691 - val_loss: 0.0326 - val_mean_squared_error: 0.0326 - val_mean_absolute_error: 0.1372 Epoch 81/100 20/20 [==============================] - ETA: 0s - loss: 0.1220 - mean_squared_error: 0.1220 - mean_absolute_error: 0.2683 Epoch 81: val_loss did not improve from 0.02470 20/20 [==============================] - 2s 95ms/step - loss: 0.1220 - mean_squared_error: 0.1220 - mean_absolute_error: 0.2683 - val_loss: 0.0264 - val_mean_squared_error: 0.0264 - val_mean_absolute_error: 0.1225 Epoch 82/100 20/20 [==============================] - ETA: 0s - loss: 0.1160 - mean_squared_error: 0.1160 - mean_absolute_error: 0.2634 Epoch 82: val_loss did not improve from 0.02470 20/20 [==============================] - 2s 97ms/step - loss: 0.1160 - mean_squared_error: 0.1160 - mean_absolute_error: 0.2634 - val_loss: 0.0273 - val_mean_squared_error: 0.0273 - val_mean_absolute_error: 0.1253 Epoch 83/100 20/20 [==============================] - ETA: 0s - loss: 0.1115 - mean_squared_error: 0.1115 - mean_absolute_error: 0.2597 Epoch 83: val_loss improved from 0.02470 to 0.02310, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 99ms/step - loss: 0.1115 - mean_squared_error: 0.1115 - mean_absolute_error: 0.2597 - val_loss: 0.0231 - val_mean_squared_error: 0.0231 - val_mean_absolute_error: 0.1157 Epoch 84/100 20/20 [==============================] - ETA: 0s - loss: 0.1066 - mean_squared_error: 0.1066 - mean_absolute_error: 0.2521 Epoch 84: val_loss did not improve from 0.02310 20/20 [==============================] - 2s 95ms/step - loss: 0.1066 - mean_squared_error: 0.1066 - mean_absolute_error: 0.2521 - val_loss: 0.0273 - val_mean_squared_error: 0.0273 - val_mean_absolute_error: 0.1274 Epoch 85/100 20/20 [==============================] - ETA: 0s - loss: 0.1037 - mean_squared_error: 0.1037 - mean_absolute_error: 0.2471 Epoch 85: val_loss improved from 0.02310 to 0.02152, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 83ms/step - loss: 0.1037 - mean_squared_error: 0.1037 - mean_absolute_error: 0.2471 - val_loss: 0.0215 - val_mean_squared_error: 0.0215 - val_mean_absolute_error: 0.1132 Epoch 86/100 20/20 [==============================] - ETA: 0s - loss: 0.0990 - mean_squared_error: 0.0990 - mean_absolute_error: 0.2440 Epoch 86: val_loss did not improve from 0.02152 20/20 [==============================] - 1s 71ms/step - loss: 0.0990 - mean_squared_error: 0.0990 - mean_absolute_error: 0.2440 - val_loss: 0.0251 - val_mean_squared_error: 0.0251 - val_mean_absolute_error: 0.1209 Epoch 87/100 20/20 [==============================] - ETA: 0s - loss: 0.0969 - mean_squared_error: 0.0969 - mean_absolute_error: 0.2412 Epoch 87: val_loss did not improve from 0.02152 20/20 [==============================] - 2s 82ms/step - loss: 0.0969 - mean_squared_error: 0.0969 - mean_absolute_error: 0.2412 - val_loss: 0.0250 - val_mean_squared_error: 0.0250 - val_mean_absolute_error: 0.1219 Epoch 88/100 20/20 [==============================] - ETA: 0s - loss: 0.0946 - mean_squared_error: 0.0946 - mean_absolute_error: 0.2371 Epoch 88: val_loss did not improve from 0.02152 20/20 [==============================] - 1s 71ms/step - loss: 0.0946 - mean_squared_error: 0.0946 - mean_absolute_error: 0.2371 - val_loss: 0.0229 - val_mean_squared_error: 0.0229 - val_mean_absolute_error: 0.1170 Epoch 89/100 20/20 [==============================] - ETA: 0s - loss: 0.0893 - mean_squared_error: 0.0893 - mean_absolute_error: 0.2308 Epoch 89: val_loss did not improve from 0.02152 20/20 [==============================] - 1s 74ms/step - loss: 0.0893 - mean_squared_error: 0.0893 - mean_absolute_error: 0.2308 - val_loss: 0.0230 - val_mean_squared_error: 0.0230 - val_mean_absolute_error: 0.1171 Epoch 90/100 20/20 [==============================] - ETA: 0s - loss: 0.0891 - mean_squared_error: 0.0891 - mean_absolute_error: 0.2309 Epoch 90: val_loss did not improve from 0.02152 20/20 [==============================] - 1s 72ms/step - loss: 0.0891 - mean_squared_error: 0.0891 - mean_absolute_error: 0.2309 - val_loss: 0.0232 - val_mean_squared_error: 0.0232 - val_mean_absolute_error: 0.1151 Epoch 91/100 20/20 [==============================] - ETA: 0s - loss: 0.0852 - mean_squared_error: 0.0852 - mean_absolute_error: 0.2269 Epoch 91: val_loss improved from 0.02152 to 0.01980, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 72ms/step - loss: 0.0852 - mean_squared_error: 0.0852 - mean_absolute_error: 0.2269 - val_loss: 0.0198 - val_mean_squared_error: 0.0198 - val_mean_absolute_error: 0.1088 Epoch 92/100 20/20 [==============================] - ETA: 0s - loss: 0.0796 - mean_squared_error: 0.0796 - mean_absolute_error: 0.2185 Epoch 92: val_loss improved from 0.01980 to 0.01858, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 83ms/step - loss: 0.0796 - mean_squared_error: 0.0796 - mean_absolute_error: 0.2185 - val_loss: 0.0186 - val_mean_squared_error: 0.0186 - val_mean_absolute_error: 0.1038 Epoch 93/100 20/20 [==============================] - ETA: 0s - loss: 0.0800 - mean_squared_error: 0.0800 - mean_absolute_error: 0.2189 Epoch 93: val_loss did not improve from 0.01858 20/20 [==============================] - 2s 77ms/step - loss: 0.0800 - mean_squared_error: 0.0800 - mean_absolute_error: 0.2189 - val_loss: 0.0208 - val_mean_squared_error: 0.0208 - val_mean_absolute_error: 0.1093 Epoch 94/100 20/20 [==============================] - ETA: 0s - loss: 0.0779 - mean_squared_error: 0.0779 - mean_absolute_error: 0.2161 Epoch 94: val_loss improved from 0.01858 to 0.01825, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 73ms/step - loss: 0.0779 - mean_squared_error: 0.0779 - mean_absolute_error: 0.2161 - val_loss: 0.0182 - val_mean_squared_error: 0.0182 - val_mean_absolute_error: 0.1041 Epoch 95/100 20/20 [==============================] - ETA: 0s - loss: 0.0746 - mean_squared_error: 0.0746 - mean_absolute_error: 0.2111 Epoch 95: val_loss did not improve from 0.01825 20/20 [==============================] - 1s 70ms/step - loss: 0.0746 - mean_squared_error: 0.0746 - mean_absolute_error: 0.2111 - val_loss: 0.0192 - val_mean_squared_error: 0.0192 - val_mean_absolute_error: 0.1060 Epoch 96/100 20/20 [==============================] - ETA: 0s - loss: 0.0741 - mean_squared_error: 0.0741 - mean_absolute_error: 0.2122 Epoch 96: val_loss did not improve from 0.01825 20/20 [==============================] - 1s 70ms/step - loss: 0.0741 - mean_squared_error: 0.0741 - mean_absolute_error: 0.2122 - val_loss: 0.0185 - val_mean_squared_error: 0.0185 - val_mean_absolute_error: 0.1055 Epoch 97/100 20/20 [==============================] - ETA: 0s - loss: 0.0678 - mean_squared_error: 0.0678 - mean_absolute_error: 0.2019 Epoch 97: val_loss did not improve from 0.01825 20/20 [==============================] - 1s 73ms/step - loss: 0.0678 - mean_squared_error: 0.0678 - mean_absolute_error: 0.2019 - val_loss: 0.0195 - val_mean_squared_error: 0.0195 - val_mean_absolute_error: 0.1069 Epoch 98/100 20/20 [==============================] - ETA: 0s - loss: 0.0697 - mean_squared_error: 0.0697 - mean_absolute_error: 0.2041 Epoch 98: val_loss improved from 0.01825 to 0.01562, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 80ms/step - loss: 0.0697 - mean_squared_error: 0.0697 - mean_absolute_error: 0.2041 - val_loss: 0.0156 - val_mean_squared_error: 0.0156 - val_mean_absolute_error: 0.0967 Epoch 99/100 20/20 [==============================] - ETA: 0s - loss: 0.0704 - mean_squared_error: 0.0704 - mean_absolute_error: 0.2049 Epoch 99: val_loss did not improve from 0.01562 20/20 [==============================] - 2s 81ms/step - loss: 0.0704 - mean_squared_error: 0.0704 - mean_absolute_error: 0.2049 - val_loss: 0.0175 - val_mean_squared_error: 0.0175 - val_mean_absolute_error: 0.1022 Epoch 100/100 20/20 [==============================] - ETA: 0s - loss: 0.0624 - mean_squared_error: 0.0624 - mean_absolute_error: 0.1946 Epoch 100: val_loss did not improve from 0.01562 20/20 [==============================] - 1s 76ms/step - loss: 0.0624 - mean_squared_error: 0.0624 - mean_absolute_error: 0.1946 - val_loss: 0.0161 - val_mean_squared_error: 0.0161 - val_mean_absolute_error: 0.0973
model_evaluate_and_plot(model_sm3a,history_sm3a,X_test3a,y_test3a)
7/7 [==============================] - 0s 26ms/step - loss: 0.0146 - mean_squared_error: 0.0146 - mean_absolute_error: 0.0934 Loss: 0.014554951339960098 Mean Square Error: 0.014554951339960098 Mean Absolute Error: 0.09344690293073654 7/7 [==============================] - 0s 29ms/step Test R2 score: 0.8350145658715739
df_cfs4b3b, X3b, y3b, X_train3b, X_test3b, y_train3b, y_test3b = prep_img_data('cfs4_big_bin_2.h5', 'cfs4_big_corr_out_2.csv',cfs=4)
cfs4_big_bin_2 00 01 02 03 10 11 12 \ 0 0.999997 -0.087677 0.145396 0.525171 -0.058597 -0.091583 0.549910 1 0.999782 0.423393 0.202039 0.274956 0.327039 0.026258 0.479817 2 0.999909 0.401385 0.482982 -0.045230 -0.027435 0.029423 -0.464067 3 0.999936 0.457835 0.199154 -0.107269 0.077192 -0.042165 -0.249196 4 0.999852 0.202109 0.202543 -0.316988 -0.235825 -0.265773 -0.181571 13 20 21 22 23 30 31 \ 0 -0.437503 -0.340715 0.404077 -0.347659 -0.119795 -0.024743 -0.322486 1 0.603081 0.306206 0.198133 0.472004 0.301432 0.411675 0.524088 2 -0.373789 -0.293060 -0.642452 -0.273529 -0.503129 -0.362070 0.058937 3 0.072418 -0.556054 -0.488346 -0.351193 -0.171505 -0.095551 0.057227 4 0.098811 -0.182439 0.104887 -0.398585 -0.108655 -0.279228 0.309748 32 33 0 -0.308597 0.179684 1 0.621744 0.167751 2 0.019440 0.338885 3 0.252540 -0.117252 4 0.383967 0.441259 (800, 64, 64, 1) <class 'numpy.ndarray'> (200, 64, 64, 1) <class 'numpy.ndarray'> (800, 15) <class 'numpy.ndarray'> (200, 15) <class 'numpy.ndarray'> 0.25286022649172446 0.06962137296795845 34.149681091308594 0.005863279569894075
df_cfs4b3c, X3c, y3c, X_train3c, X_test3c, y_train3c, y_test3c = prep_img_data('cfs4_big_bin_3.h5', 'cfs4_big_corr_out_3.csv',cfs=4)
cfs4_big_bin_3 00 01 02 03 10 11 12 \ 0 0.999932 -0.243558 0.040731 0.326755 -0.149808 -0.184964 0.385349 1 0.999958 0.272093 0.211329 0.115843 0.179645 0.390583 0.298135 2 0.999204 -0.140553 0.191478 0.415871 -0.051577 0.231843 0.370298 3 0.999896 0.214740 -0.235347 0.012049 0.171337 -0.305660 -0.326493 4 0.999868 0.099260 0.321048 -0.121660 0.429121 -0.119490 0.111847 13 20 21 22 23 30 31 \ 0 -0.312568 -0.209269 -0.262221 0.108439 -0.129408 0.131876 0.363213 1 -0.113758 0.096746 -0.323827 -0.167143 -0.055598 0.121485 -0.170615 2 -0.221282 0.095124 0.082971 -0.034216 0.358579 0.086444 0.419777 3 -0.273542 -0.375104 -0.565642 -0.120330 0.074983 -0.628142 0.012917 4 -0.246660 0.438236 -0.195445 0.217316 -0.367754 0.583635 0.132246 32 33 0 -0.000068 -0.299547 1 -0.452733 -0.592924 2 0.101635 -0.139251 3 0.446077 0.009879 4 0.551517 0.107507 (800, 64, 64, 1) <class 'numpy.ndarray'> (200, 64, 64, 1) <class 'numpy.ndarray'> (800, 15) <class 'numpy.ndarray'> (200, 15) <class 'numpy.ndarray'> 0.25305830813776947 0.06957972794771194 41.80085372924805 0.0057398974895477295
df_cfs4b3d, X3d, y3d, X_train3d, X_test3d, y_train3d, y_test3d = prep_img_data('cfs4_big_bin_4.h5', 'cfs4_big_corr_out_4.csv',cfs=4)
cfs4_big_bin_4 00 01 02 03 10 11 12 \ 0 0.999887 -0.125981 -0.384662 -0.150721 0.003359 -0.312613 0.048932 1 0.999999 -0.010418 -0.209637 -0.453126 -0.281251 -0.047744 0.445311 2 0.999988 -0.002182 -0.502616 0.325509 0.270821 -0.273450 -0.165377 3 0.999999 0.003471 -0.553821 -0.208769 -0.059463 -0.020400 -0.243491 4 0.999763 -0.269769 -0.416904 0.166863 0.116950 -0.345289 0.248461 13 20 21 22 23 30 31 \ 0 -0.157665 -0.133794 -0.307405 0.357960 0.269852 -0.224071 0.507265 1 0.018228 0.000867 -0.028213 -0.041668 -0.325088 -0.427953 0.137586 2 0.373686 0.237835 0.094172 -0.436210 -0.168849 0.661012 -0.054266 3 -0.035157 -0.546876 -0.372831 0.380207 0.539061 0.059027 0.175780 4 -0.004578 -0.227234 0.047072 -0.005446 -0.035394 -0.452060 0.458964 32 33 0 0.288515 -0.492735 1 -0.181859 0.286023 2 -0.534300 0.365873 3 0.052082 -0.062067 4 0.083096 -0.156053 (800, 64, 64, 1) <class 'numpy.ndarray'> (200, 64, 64, 1) <class 'numpy.ndarray'> (800, 15) <class 'numpy.ndarray'> (200, 15) <class 'numpy.ndarray'> 0.2522898752774928 0.0700620487332344 40.3973388671875 0.006213907618075609
df_cfs4b3e, X3e, y3e, X_train3e, X_test3e, y_train3e, y_test3e = prep_img_data('cfs4_big_bin_5.h5', 'cfs4_big_corr_out_5.csv',cfs=4)
cfs4_big_bin_5 00 01 02 03 10 11 12 \ 0 0.999936 -0.372894 0.257314 -0.258311 -0.083832 0.130578 0.044206 1 0.999966 -0.001336 0.011684 0.416198 0.379740 0.157084 0.261684 2 0.999986 -0.219632 0.394518 0.252591 -0.392375 -0.065986 -0.079441 3 0.999882 -0.318694 0.219934 0.179570 -0.187184 0.641809 -0.057843 4 0.999921 -0.181937 -0.124211 -0.418916 -0.000513 0.127959 0.244713 13 20 21 22 23 30 31 \ 0 0.451324 -0.503971 0.563304 -0.347721 0.134050 -0.149804 -0.307790 1 0.505608 -0.129375 0.149271 -0.046041 0.389289 -0.138489 0.013855 2 -0.524319 -0.178833 0.379327 -0.217028 0.455282 0.677938 -0.371107 3 0.039379 -0.205847 0.026358 0.328007 0.153528 0.645716 -0.408972 4 -0.390704 0.068497 0.482560 -0.338187 -0.166312 -0.244003 0.383167 32 33 0 0.245161 -0.182790 1 -0.493958 0.138421 2 0.352417 0.006497 3 0.127920 0.152226 4 0.232994 0.148358 (800, 64, 64, 1) <class 'numpy.ndarray'> (200, 64, 64, 1) <class 'numpy.ndarray'> (800, 15) <class 'numpy.ndarray'> (200, 15) <class 'numpy.ndarray'> 0.25308211562980704 0.06933529302477837 46.72438430786133 0.007030986249446869
history_sm3b =model_sm3a.fit(X_train3b,y_train3b,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 20/20 [==============================] - ETA: 0s - loss: 0.0652 - mean_squared_error: 0.0652 - mean_absolute_error: 0.1975 Epoch 1: val_loss did not improve from 0.01562 20/20 [==============================] - 2s 74ms/step - loss: 0.0652 - mean_squared_error: 0.0652 - mean_absolute_error: 0.1975 - val_loss: 0.0174 - val_mean_squared_error: 0.0174 - val_mean_absolute_error: 0.1016 Epoch 2/100 20/20 [==============================] - ETA: 0s - loss: 0.0635 - mean_squared_error: 0.0635 - mean_absolute_error: 0.1953 Epoch 2: val_loss improved from 0.01562 to 0.01506, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 114ms/step - loss: 0.0635 - mean_squared_error: 0.0635 - mean_absolute_error: 0.1953 - val_loss: 0.0151 - val_mean_squared_error: 0.0151 - val_mean_absolute_error: 0.0953 Epoch 3/100 20/20 [==============================] - ETA: 0s - loss: 0.0596 - mean_squared_error: 0.0596 - mean_absolute_error: 0.1899 Epoch 3: val_loss improved from 0.01506 to 0.01430, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 108ms/step - loss: 0.0596 - mean_squared_error: 0.0596 - mean_absolute_error: 0.1899 - val_loss: 0.0143 - val_mean_squared_error: 0.0143 - val_mean_absolute_error: 0.0899 Epoch 4/100 20/20 [==============================] - ETA: 0s - loss: 0.0556 - mean_squared_error: 0.0556 - mean_absolute_error: 0.1834 Epoch 4: val_loss improved from 0.01430 to 0.01391, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 111ms/step - loss: 0.0556 - mean_squared_error: 0.0556 - mean_absolute_error: 0.1834 - val_loss: 0.0139 - val_mean_squared_error: 0.0139 - val_mean_absolute_error: 0.0904 Epoch 5/100 20/20 [==============================] - ETA: 0s - loss: 0.0544 - mean_squared_error: 0.0544 - mean_absolute_error: 0.1815 Epoch 5: val_loss did not improve from 0.01391 20/20 [==============================] - 2s 77ms/step - loss: 0.0544 - mean_squared_error: 0.0544 - mean_absolute_error: 0.1815 - val_loss: 0.0154 - val_mean_squared_error: 0.0154 - val_mean_absolute_error: 0.0954 Epoch 6/100 20/20 [==============================] - ETA: 0s - loss: 0.0538 - mean_squared_error: 0.0538 - mean_absolute_error: 0.1818 Epoch 6: val_loss improved from 0.01391 to 0.01239, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.0538 - mean_squared_error: 0.0538 - mean_absolute_error: 0.1818 - val_loss: 0.0124 - val_mean_squared_error: 0.0124 - val_mean_absolute_error: 0.0868 Epoch 7/100 20/20 [==============================] - ETA: 0s - loss: 0.0523 - mean_squared_error: 0.0523 - mean_absolute_error: 0.1780 Epoch 7: val_loss did not improve from 0.01239 20/20 [==============================] - 1s 72ms/step - loss: 0.0523 - mean_squared_error: 0.0523 - mean_absolute_error: 0.1780 - val_loss: 0.0164 - val_mean_squared_error: 0.0164 - val_mean_absolute_error: 0.0991 Epoch 8/100 20/20 [==============================] - ETA: 0s - loss: 0.0496 - mean_squared_error: 0.0496 - mean_absolute_error: 0.1736 Epoch 8: val_loss did not improve from 0.01239 20/20 [==============================] - 1s 68ms/step - loss: 0.0496 - mean_squared_error: 0.0496 - mean_absolute_error: 0.1736 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0889 Epoch 9/100 20/20 [==============================] - ETA: 0s - loss: 0.0472 - mean_squared_error: 0.0472 - mean_absolute_error: 0.1691 Epoch 9: val_loss improved from 0.01239 to 0.01211, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 74ms/step - loss: 0.0472 - mean_squared_error: 0.0472 - mean_absolute_error: 0.1691 - val_loss: 0.0121 - val_mean_squared_error: 0.0121 - val_mean_absolute_error: 0.0855 Epoch 10/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0499 - mean_squared_error: 0.0499 - mean_absolute_error: 0.1741 Epoch 10: val_loss did not improve from 0.01211 20/20 [==============================] - 1s 71ms/step - loss: 0.0501 - mean_squared_error: 0.0501 - mean_absolute_error: 0.1742 - val_loss: 0.0165 - val_mean_squared_error: 0.0165 - val_mean_absolute_error: 0.0978 Epoch 11/100 20/20 [==============================] - ETA: 0s - loss: 0.0472 - mean_squared_error: 0.0472 - mean_absolute_error: 0.1695 Epoch 11: val_loss improved from 0.01211 to 0.01208, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 76ms/step - loss: 0.0472 - mean_squared_error: 0.0472 - mean_absolute_error: 0.1695 - val_loss: 0.0121 - val_mean_squared_error: 0.0121 - val_mean_absolute_error: 0.0849 Epoch 12/100 20/20 [==============================] - ETA: 0s - loss: 0.0437 - mean_squared_error: 0.0437 - mean_absolute_error: 0.1643 Epoch 12: val_loss did not improve from 0.01208 20/20 [==============================] - 1s 69ms/step - loss: 0.0437 - mean_squared_error: 0.0437 - mean_absolute_error: 0.1643 - val_loss: 0.0125 - val_mean_squared_error: 0.0125 - val_mean_absolute_error: 0.0857 Epoch 13/100 20/20 [==============================] - ETA: 0s - loss: 0.0429 - mean_squared_error: 0.0429 - mean_absolute_error: 0.1606 Epoch 13: val_loss improved from 0.01208 to 0.01117, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 69ms/step - loss: 0.0429 - mean_squared_error: 0.0429 - mean_absolute_error: 0.1606 - val_loss: 0.0112 - val_mean_squared_error: 0.0112 - val_mean_absolute_error: 0.0821 Epoch 14/100 20/20 [==============================] - ETA: 0s - loss: 0.0409 - mean_squared_error: 0.0409 - mean_absolute_error: 0.1578 Epoch 14: val_loss did not improve from 0.01117 20/20 [==============================] - 2s 103ms/step - loss: 0.0409 - mean_squared_error: 0.0409 - mean_absolute_error: 0.1578 - val_loss: 0.0126 - val_mean_squared_error: 0.0126 - val_mean_absolute_error: 0.0873 Epoch 15/100 20/20 [==============================] - ETA: 0s - loss: 0.0406 - mean_squared_error: 0.0406 - mean_absolute_error: 0.1562 Epoch 15: val_loss did not improve from 0.01117 20/20 [==============================] - 2s 90ms/step - loss: 0.0406 - mean_squared_error: 0.0406 - mean_absolute_error: 0.1562 - val_loss: 0.0122 - val_mean_squared_error: 0.0122 - val_mean_absolute_error: 0.0864 Epoch 16/100 20/20 [==============================] - ETA: 0s - loss: 0.0389 - mean_squared_error: 0.0389 - mean_absolute_error: 0.1541 Epoch 16: val_loss did not improve from 0.01117 20/20 [==============================] - 1s 75ms/step - loss: 0.0389 - mean_squared_error: 0.0389 - mean_absolute_error: 0.1541 - val_loss: 0.0113 - val_mean_squared_error: 0.0113 - val_mean_absolute_error: 0.0804 Epoch 17/100 20/20 [==============================] - ETA: 0s - loss: 0.0374 - mean_squared_error: 0.0374 - mean_absolute_error: 0.1504 Epoch 17: val_loss improved from 0.01117 to 0.00890, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.0374 - mean_squared_error: 0.0374 - mean_absolute_error: 0.1504 - val_loss: 0.0089 - val_mean_squared_error: 0.0089 - val_mean_absolute_error: 0.0729 Epoch 18/100 20/20 [==============================] - ETA: 0s - loss: 0.0371 - mean_squared_error: 0.0371 - mean_absolute_error: 0.1497 Epoch 18: val_loss did not improve from 0.00890 20/20 [==============================] - 1s 73ms/step - loss: 0.0371 - mean_squared_error: 0.0371 - mean_absolute_error: 0.1497 - val_loss: 0.0116 - val_mean_squared_error: 0.0116 - val_mean_absolute_error: 0.0829 Epoch 19/100 20/20 [==============================] - ETA: 0s - loss: 0.0370 - mean_squared_error: 0.0370 - mean_absolute_error: 0.1489 Epoch 19: val_loss did not improve from 0.00890 20/20 [==============================] - 1s 72ms/step - loss: 0.0370 - mean_squared_error: 0.0370 - mean_absolute_error: 0.1489 - val_loss: 0.0090 - val_mean_squared_error: 0.0090 - val_mean_absolute_error: 0.0738 Epoch 20/100 20/20 [==============================] - ETA: 0s - loss: 0.0358 - mean_squared_error: 0.0358 - mean_absolute_error: 0.1468 Epoch 20: val_loss did not improve from 0.00890 20/20 [==============================] - 1s 71ms/step - loss: 0.0358 - mean_squared_error: 0.0358 - mean_absolute_error: 0.1468 - val_loss: 0.0102 - val_mean_squared_error: 0.0102 - val_mean_absolute_error: 0.0781 Epoch 21/100 20/20 [==============================] - ETA: 0s - loss: 0.0318 - mean_squared_error: 0.0318 - mean_absolute_error: 0.1396 Epoch 21: val_loss did not improve from 0.00890 20/20 [==============================] - 1s 68ms/step - loss: 0.0318 - mean_squared_error: 0.0318 - mean_absolute_error: 0.1396 - val_loss: 0.0103 - val_mean_squared_error: 0.0103 - val_mean_absolute_error: 0.0784 Epoch 22/100 20/20 [==============================] - ETA: 0s - loss: 0.0324 - mean_squared_error: 0.0324 - mean_absolute_error: 0.1404 Epoch 22: val_loss improved from 0.00890 to 0.00850, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 72ms/step - loss: 0.0324 - mean_squared_error: 0.0324 - mean_absolute_error: 0.1404 - val_loss: 0.0085 - val_mean_squared_error: 0.0085 - val_mean_absolute_error: 0.0717 Epoch 23/100 20/20 [==============================] - ETA: 0s - loss: 0.0310 - mean_squared_error: 0.0310 - mean_absolute_error: 0.1371 Epoch 23: val_loss improved from 0.00850 to 0.00821, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 83ms/step - loss: 0.0310 - mean_squared_error: 0.0310 - mean_absolute_error: 0.1371 - val_loss: 0.0082 - val_mean_squared_error: 0.0082 - val_mean_absolute_error: 0.0709 Epoch 24/100 20/20 [==============================] - ETA: 0s - loss: 0.0305 - mean_squared_error: 0.0305 - mean_absolute_error: 0.1364 Epoch 24: val_loss did not improve from 0.00821 20/20 [==============================] - 2s 105ms/step - loss: 0.0305 - mean_squared_error: 0.0305 - mean_absolute_error: 0.1364 - val_loss: 0.0101 - val_mean_squared_error: 0.0101 - val_mean_absolute_error: 0.0774 Epoch 25/100 20/20 [==============================] - ETA: 0s - loss: 0.0304 - mean_squared_error: 0.0304 - mean_absolute_error: 0.1357 Epoch 25: val_loss improved from 0.00821 to 0.00800, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 103ms/step - loss: 0.0304 - mean_squared_error: 0.0304 - mean_absolute_error: 0.1357 - val_loss: 0.0080 - val_mean_squared_error: 0.0080 - val_mean_absolute_error: 0.0693 Epoch 26/100 20/20 [==============================] - ETA: 0s - loss: 0.0290 - mean_squared_error: 0.0290 - mean_absolute_error: 0.1325 Epoch 26: val_loss did not improve from 0.00800 20/20 [==============================] - 2s 105ms/step - loss: 0.0290 - mean_squared_error: 0.0290 - mean_absolute_error: 0.1325 - val_loss: 0.0083 - val_mean_squared_error: 0.0083 - val_mean_absolute_error: 0.0714 Epoch 27/100 20/20 [==============================] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.0286 - mean_absolute_error: 0.1320 Epoch 27: val_loss improved from 0.00800 to 0.00772, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 78ms/step - loss: 0.0286 - mean_squared_error: 0.0286 - mean_absolute_error: 0.1320 - val_loss: 0.0077 - val_mean_squared_error: 0.0077 - val_mean_absolute_error: 0.0682 Epoch 28/100 20/20 [==============================] - ETA: 0s - loss: 0.0279 - mean_squared_error: 0.0279 - mean_absolute_error: 0.1299 Epoch 28: val_loss did not improve from 0.00772 20/20 [==============================] - 2s 76ms/step - loss: 0.0279 - mean_squared_error: 0.0279 - mean_absolute_error: 0.1299 - val_loss: 0.0102 - val_mean_squared_error: 0.0102 - val_mean_absolute_error: 0.0767 Epoch 29/100 20/20 [==============================] - ETA: 0s - loss: 0.0270 - mean_squared_error: 0.0270 - mean_absolute_error: 0.1281 Epoch 29: val_loss did not improve from 0.00772 20/20 [==============================] - 2s 92ms/step - loss: 0.0270 - mean_squared_error: 0.0270 - mean_absolute_error: 0.1281 - val_loss: 0.0079 - val_mean_squared_error: 0.0079 - val_mean_absolute_error: 0.0683 Epoch 30/100 20/20 [==============================] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1261 Epoch 30: val_loss did not improve from 0.00772 20/20 [==============================] - 2s 85ms/step - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1261 - val_loss: 0.0082 - val_mean_squared_error: 0.0082 - val_mean_absolute_error: 0.0696 Epoch 31/100 20/20 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1230 Epoch 31: val_loss did not improve from 0.00772 20/20 [==============================] - 2s 82ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1230 - val_loss: 0.0082 - val_mean_squared_error: 0.0082 - val_mean_absolute_error: 0.0702 Epoch 32/100 20/20 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1235 Epoch 32: val_loss did not improve from 0.00772 20/20 [==============================] - 2s 80ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1235 - val_loss: 0.0094 - val_mean_squared_error: 0.0094 - val_mean_absolute_error: 0.0753 Epoch 33/100 20/20 [==============================] - ETA: 0s - loss: 0.0238 - mean_squared_error: 0.0238 - mean_absolute_error: 0.1204 Epoch 33: val_loss did not improve from 0.00772 20/20 [==============================] - 1s 70ms/step - loss: 0.0238 - mean_squared_error: 0.0238 - mean_absolute_error: 0.1204 - val_loss: 0.0090 - val_mean_squared_error: 0.0090 - val_mean_absolute_error: 0.0730 Epoch 34/100 20/20 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1204 Epoch 34: val_loss improved from 0.00772 to 0.00715, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 78ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1204 - val_loss: 0.0072 - val_mean_squared_error: 0.0072 - val_mean_absolute_error: 0.0657 Epoch 35/100 20/20 [==============================] - ETA: 0s - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1201 Epoch 35: val_loss improved from 0.00715 to 0.00618, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 83ms/step - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1201 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0608 Epoch 36/100 20/20 [==============================] - ETA: 0s - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.1157 Epoch 36: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 85ms/step - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.1157 - val_loss: 0.0073 - val_mean_squared_error: 0.0073 - val_mean_absolute_error: 0.0661 Epoch 37/100 20/20 [==============================] - ETA: 0s - loss: 0.0224 - mean_squared_error: 0.0224 - mean_absolute_error: 0.1165 Epoch 37: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 83ms/step - loss: 0.0224 - mean_squared_error: 0.0224 - mean_absolute_error: 0.1165 - val_loss: 0.0079 - val_mean_squared_error: 0.0079 - val_mean_absolute_error: 0.0684 Epoch 38/100 20/20 [==============================] - ETA: 0s - loss: 0.0214 - mean_squared_error: 0.0214 - mean_absolute_error: 0.1140 Epoch 38: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 78ms/step - loss: 0.0214 - mean_squared_error: 0.0214 - mean_absolute_error: 0.1140 - val_loss: 0.0076 - val_mean_squared_error: 0.0076 - val_mean_absolute_error: 0.0679 Epoch 39/100 20/20 [==============================] - ETA: 0s - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.1131 Epoch 39: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 80ms/step - loss: 0.0210 - mean_squared_error: 0.0210 - mean_absolute_error: 0.1131 - val_loss: 0.0069 - val_mean_squared_error: 0.0069 - val_mean_absolute_error: 0.0648 Epoch 40/100 20/20 [==============================] - ETA: 0s - loss: 0.0208 - mean_squared_error: 0.0208 - mean_absolute_error: 0.1130 Epoch 40: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 87ms/step - loss: 0.0208 - mean_squared_error: 0.0208 - mean_absolute_error: 0.1130 - val_loss: 0.0066 - val_mean_squared_error: 0.0066 - val_mean_absolute_error: 0.0637 Epoch 41/100 20/20 [==============================] - ETA: 0s - loss: 0.0209 - mean_squared_error: 0.0209 - mean_absolute_error: 0.1120 Epoch 41: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 110ms/step - loss: 0.0209 - mean_squared_error: 0.0209 - mean_absolute_error: 0.1120 - val_loss: 0.0077 - val_mean_squared_error: 0.0077 - val_mean_absolute_error: 0.0691 Epoch 42/100 20/20 [==============================] - ETA: 0s - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.1098 Epoch 42: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 106ms/step - loss: 0.0199 - mean_squared_error: 0.0199 - mean_absolute_error: 0.1098 - val_loss: 0.0066 - val_mean_squared_error: 0.0066 - val_mean_absolute_error: 0.0635 Epoch 43/100 20/20 [==============================] - ETA: 0s - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.1079 Epoch 43: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 107ms/step - loss: 0.0192 - mean_squared_error: 0.0192 - mean_absolute_error: 0.1079 - val_loss: 0.0089 - val_mean_squared_error: 0.0089 - val_mean_absolute_error: 0.0721 Epoch 44/100 20/20 [==============================] - ETA: 0s - loss: 0.0194 - mean_squared_error: 0.0194 - mean_absolute_error: 0.1084 Epoch 44: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 106ms/step - loss: 0.0194 - mean_squared_error: 0.0194 - mean_absolute_error: 0.1084 - val_loss: 0.0076 - val_mean_squared_error: 0.0076 - val_mean_absolute_error: 0.0674 Epoch 45/100 20/20 [==============================] - ETA: 0s - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1070 Epoch 45: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 105ms/step - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1070 - val_loss: 0.0072 - val_mean_squared_error: 0.0072 - val_mean_absolute_error: 0.0660 Epoch 46/100 20/20 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1049 Epoch 46: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 114ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1049 - val_loss: 0.0068 - val_mean_squared_error: 0.0068 - val_mean_absolute_error: 0.0640 Epoch 47/100 20/20 [==============================] - ETA: 0s - loss: 0.0175 - mean_squared_error: 0.0175 - mean_absolute_error: 0.1033 Epoch 47: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 109ms/step - loss: 0.0175 - mean_squared_error: 0.0175 - mean_absolute_error: 0.1033 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0614 Epoch 48/100 20/20 [==============================] - ETA: 0s - loss: 0.0170 - mean_squared_error: 0.0170 - mean_absolute_error: 0.1013 Epoch 48: val_loss did not improve from 0.00618 20/20 [==============================] - 2s 106ms/step - loss: 0.0170 - mean_squared_error: 0.0170 - mean_absolute_error: 0.1013 - val_loss: 0.0070 - val_mean_squared_error: 0.0070 - val_mean_absolute_error: 0.0647 Epoch 49/100 20/20 [==============================] - ETA: 0s - loss: 0.0173 - mean_squared_error: 0.0173 - mean_absolute_error: 0.1019 Epoch 49: val_loss improved from 0.00618 to 0.00528, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 91ms/step - loss: 0.0173 - mean_squared_error: 0.0173 - mean_absolute_error: 0.1019 - val_loss: 0.0053 - val_mean_squared_error: 0.0053 - val_mean_absolute_error: 0.0568 Epoch 50/100 20/20 [==============================] - ETA: 0s - loss: 0.0158 - mean_squared_error: 0.0158 - mean_absolute_error: 0.0981 Epoch 50: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 96ms/step - loss: 0.0158 - mean_squared_error: 0.0158 - mean_absolute_error: 0.0981 - val_loss: 0.0053 - val_mean_squared_error: 0.0053 - val_mean_absolute_error: 0.0571 Epoch 51/100 20/20 [==============================] - ETA: 0s - loss: 0.0168 - mean_squared_error: 0.0168 - mean_absolute_error: 0.1014 Epoch 51: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 93ms/step - loss: 0.0168 - mean_squared_error: 0.0168 - mean_absolute_error: 0.1014 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0616 Epoch 52/100 20/20 [==============================] - ETA: 0s - loss: 0.0161 - mean_squared_error: 0.0161 - mean_absolute_error: 0.0988 Epoch 52: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 78ms/step - loss: 0.0161 - mean_squared_error: 0.0161 - mean_absolute_error: 0.0988 - val_loss: 0.0074 - val_mean_squared_error: 0.0074 - val_mean_absolute_error: 0.0669 Epoch 53/100 20/20 [==============================] - ETA: 0s - loss: 0.0166 - mean_squared_error: 0.0166 - mean_absolute_error: 0.1002 Epoch 53: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 81ms/step - loss: 0.0166 - mean_squared_error: 0.0166 - mean_absolute_error: 0.1002 - val_loss: 0.0071 - val_mean_squared_error: 0.0071 - val_mean_absolute_error: 0.0658 Epoch 54/100 20/20 [==============================] - ETA: 0s - loss: 0.0159 - mean_squared_error: 0.0159 - mean_absolute_error: 0.0987 Epoch 54: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 77ms/step - loss: 0.0159 - mean_squared_error: 0.0159 - mean_absolute_error: 0.0987 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0592 Epoch 55/100 20/20 [==============================] - ETA: 0s - loss: 0.0155 - mean_squared_error: 0.0155 - mean_absolute_error: 0.0973 Epoch 55: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 81ms/step - loss: 0.0155 - mean_squared_error: 0.0155 - mean_absolute_error: 0.0973 - val_loss: 0.0067 - val_mean_squared_error: 0.0067 - val_mean_absolute_error: 0.0637 Epoch 56/100 20/20 [==============================] - ETA: 0s - loss: 0.0150 - mean_squared_error: 0.0150 - mean_absolute_error: 0.0957 Epoch 56: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 88ms/step - loss: 0.0150 - mean_squared_error: 0.0150 - mean_absolute_error: 0.0957 - val_loss: 0.0056 - val_mean_squared_error: 0.0056 - val_mean_absolute_error: 0.0589 Epoch 57/100 20/20 [==============================] - ETA: 0s - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0948 Epoch 57: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 88ms/step - loss: 0.0148 - mean_squared_error: 0.0148 - mean_absolute_error: 0.0948 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0618 Epoch 58/100 20/20 [==============================] - ETA: 0s - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0948 Epoch 58: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 88ms/step - loss: 0.0147 - mean_squared_error: 0.0147 - mean_absolute_error: 0.0948 - val_loss: 0.0065 - val_mean_squared_error: 0.0065 - val_mean_absolute_error: 0.0629 Epoch 59/100 20/20 [==============================] - ETA: 0s - loss: 0.0139 - mean_squared_error: 0.0139 - mean_absolute_error: 0.0919 Epoch 59: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 99ms/step - loss: 0.0139 - mean_squared_error: 0.0139 - mean_absolute_error: 0.0919 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0613 Epoch 60/100 20/20 [==============================] - ETA: 0s - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0916 Epoch 60: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 92ms/step - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0916 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0608 Epoch 61/100 20/20 [==============================] - ETA: 0s - loss: 0.0130 - mean_squared_error: 0.0130 - mean_absolute_error: 0.0887 Epoch 61: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 87ms/step - loss: 0.0130 - mean_squared_error: 0.0130 - mean_absolute_error: 0.0887 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0595 Epoch 62/100 20/20 [==============================] - ETA: 0s - loss: 0.0129 - mean_squared_error: 0.0129 - mean_absolute_error: 0.0892 Epoch 62: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 92ms/step - loss: 0.0129 - mean_squared_error: 0.0129 - mean_absolute_error: 0.0892 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0610 Epoch 63/100 20/20 [==============================] - ETA: 0s - loss: 0.0132 - mean_squared_error: 0.0132 - mean_absolute_error: 0.0890 Epoch 63: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 101ms/step - loss: 0.0132 - mean_squared_error: 0.0132 - mean_absolute_error: 0.0890 - val_loss: 0.0061 - val_mean_squared_error: 0.0061 - val_mean_absolute_error: 0.0600 Epoch 64/100 20/20 [==============================] - ETA: 0s - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0882 Epoch 64: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 100ms/step - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0882 - val_loss: 0.0057 - val_mean_squared_error: 0.0057 - val_mean_absolute_error: 0.0580 Epoch 65/100 20/20 [==============================] - ETA: 0s - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0875 Epoch 65: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 87ms/step - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0875 - val_loss: 0.0055 - val_mean_squared_error: 0.0055 - val_mean_absolute_error: 0.0582 Epoch 66/100 20/20 [==============================] - ETA: 0s - loss: 0.0121 - mean_squared_error: 0.0121 - mean_absolute_error: 0.0859 Epoch 66: val_loss did not improve from 0.00528 20/20 [==============================] - 1s 72ms/step - loss: 0.0121 - mean_squared_error: 0.0121 - mean_absolute_error: 0.0859 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0573 Epoch 67/100 20/20 [==============================] - ETA: 0s - loss: 0.0126 - mean_squared_error: 0.0126 - mean_absolute_error: 0.0872 Epoch 67: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 102ms/step - loss: 0.0126 - mean_squared_error: 0.0126 - mean_absolute_error: 0.0872 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0591 Epoch 68/100 20/20 [==============================] - ETA: 0s - loss: 0.0120 - mean_squared_error: 0.0120 - mean_absolute_error: 0.0858 Epoch 68: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 92ms/step - loss: 0.0120 - mean_squared_error: 0.0120 - mean_absolute_error: 0.0858 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0597 Epoch 69/100 20/20 [==============================] - ETA: 0s - loss: 0.0124 - mean_squared_error: 0.0124 - mean_absolute_error: 0.0869 Epoch 69: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 99ms/step - loss: 0.0124 - mean_squared_error: 0.0124 - mean_absolute_error: 0.0869 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0597 Epoch 70/100 20/20 [==============================] - ETA: 0s - loss: 0.0119 - mean_squared_error: 0.0119 - mean_absolute_error: 0.0850 Epoch 70: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 95ms/step - loss: 0.0119 - mean_squared_error: 0.0119 - mean_absolute_error: 0.0850 - val_loss: 0.0061 - val_mean_squared_error: 0.0061 - val_mean_absolute_error: 0.0598 Epoch 71/100 20/20 [==============================] - ETA: 0s - loss: 0.0123 - mean_squared_error: 0.0123 - mean_absolute_error: 0.0862 Epoch 71: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 99ms/step - loss: 0.0123 - mean_squared_error: 0.0123 - mean_absolute_error: 0.0862 - val_loss: 0.0056 - val_mean_squared_error: 0.0056 - val_mean_absolute_error: 0.0581 Epoch 72/100 20/20 [==============================] - ETA: 0s - loss: 0.0113 - mean_squared_error: 0.0113 - mean_absolute_error: 0.0826 Epoch 72: val_loss did not improve from 0.00528 20/20 [==============================] - 2s 83ms/step - loss: 0.0113 - mean_squared_error: 0.0113 - mean_absolute_error: 0.0826 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0594 Epoch 73/100 20/20 [==============================] - ETA: 0s - loss: 0.0114 - mean_squared_error: 0.0114 - mean_absolute_error: 0.0836 Epoch 73: val_loss did not improve from 0.00528 20/20 [==============================] - 1s 75ms/step - loss: 0.0114 - mean_squared_error: 0.0114 - mean_absolute_error: 0.0836 - val_loss: 0.0055 - val_mean_squared_error: 0.0055 - val_mean_absolute_error: 0.0583 Epoch 74/100 20/20 [==============================] - ETA: 0s - loss: 0.0113 - mean_squared_error: 0.0113 - mean_absolute_error: 0.0833 Epoch 74: val_loss did not improve from 0.00528 20/20 [==============================] - 1s 71ms/step - loss: 0.0113 - mean_squared_error: 0.0113 - mean_absolute_error: 0.0833 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0570 Epoch 75/100 20/20 [==============================] - ETA: 0s - loss: 0.0115 - mean_squared_error: 0.0115 - mean_absolute_error: 0.0832 Epoch 75: val_loss did not improve from 0.00528 20/20 [==============================] - 1s 70ms/step - loss: 0.0115 - mean_squared_error: 0.0115 - mean_absolute_error: 0.0832 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0608 Epoch 76/100 20/20 [==============================] - ETA: 0s - loss: 0.0115 - mean_squared_error: 0.0115 - mean_absolute_error: 0.0833 Epoch 76: val_loss did not improve from 0.00528 20/20 [==============================] - 1s 72ms/step - loss: 0.0115 - mean_squared_error: 0.0115 - mean_absolute_error: 0.0833 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0596 Epoch 77/100 20/20 [==============================] - ETA: 0s - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0818 Epoch 77: val_loss improved from 0.00528 to 0.00504, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0818 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0554 Epoch 78/100 20/20 [==============================] - ETA: 0s - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0814 Epoch 78: val_loss did not improve from 0.00504 20/20 [==============================] - 1s 69ms/step - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0814 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0568 Epoch 79/100 20/20 [==============================] - ETA: 0s - loss: 0.0114 - mean_squared_error: 0.0114 - mean_absolute_error: 0.0833 Epoch 79: val_loss did not improve from 0.00504 20/20 [==============================] - 1s 72ms/step - loss: 0.0114 - mean_squared_error: 0.0114 - mean_absolute_error: 0.0833 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0589 Epoch 80/100 20/20 [==============================] - ETA: 0s - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0819 Epoch 80: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 83ms/step - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0819 - val_loss: 0.0064 - val_mean_squared_error: 0.0064 - val_mean_absolute_error: 0.0607 Epoch 81/100 20/20 [==============================] - ETA: 0s - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0820 Epoch 81: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 82ms/step - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0820 - val_loss: 0.0053 - val_mean_squared_error: 0.0053 - val_mean_absolute_error: 0.0569 Epoch 82/100 20/20 [==============================] - ETA: 0s - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0816 Epoch 82: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 89ms/step - loss: 0.0110 - mean_squared_error: 0.0110 - mean_absolute_error: 0.0816 - val_loss: 0.0071 - val_mean_squared_error: 0.0071 - val_mean_absolute_error: 0.0648 Epoch 83/100 20/20 [==============================] - ETA: 0s - loss: 0.0112 - mean_squared_error: 0.0112 - mean_absolute_error: 0.0826 Epoch 83: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 87ms/step - loss: 0.0112 - mean_squared_error: 0.0112 - mean_absolute_error: 0.0826 - val_loss: 0.0051 - val_mean_squared_error: 0.0051 - val_mean_absolute_error: 0.0553 Epoch 84/100 20/20 [==============================] - ETA: 0s - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0802 Epoch 84: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 83ms/step - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0802 - val_loss: 0.0059 - val_mean_squared_error: 0.0059 - val_mean_absolute_error: 0.0591 Epoch 85/100 20/20 [==============================] - ETA: 0s - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0803 Epoch 85: val_loss did not improve from 0.00504 20/20 [==============================] - 2s 105ms/step - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0803 - val_loss: 0.0056 - val_mean_squared_error: 0.0056 - val_mean_absolute_error: 0.0565 Epoch 86/100 20/20 [==============================] - ETA: 0s - loss: 0.0104 - mean_squared_error: 0.0104 - mean_absolute_error: 0.0791 Epoch 86: val_loss improved from 0.00504 to 0.00498, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 105ms/step - loss: 0.0104 - mean_squared_error: 0.0104 - mean_absolute_error: 0.0791 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0552 Epoch 87/100 20/20 [==============================] - ETA: 0s - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0799 Epoch 87: val_loss did not improve from 0.00498 20/20 [==============================] - 2s 101ms/step - loss: 0.0106 - mean_squared_error: 0.0106 - mean_absolute_error: 0.0799 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0546 Epoch 88/100 20/20 [==============================] - ETA: 0s - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0770 Epoch 88: val_loss improved from 0.00498 to 0.00471, saving model to cfs4_sm_X3a.h5 20/20 [==============================] - 2s 105ms/step - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0770 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0541 Epoch 89/100 20/20 [==============================] - ETA: 0s - loss: 0.0102 - mean_squared_error: 0.0102 - mean_absolute_error: 0.0779 Epoch 89: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 105ms/step - loss: 0.0102 - mean_squared_error: 0.0102 - mean_absolute_error: 0.0779 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0599 Epoch 90/100 20/20 [==============================] - ETA: 0s - loss: 0.0097 - mean_squared_error: 0.0097 - mean_absolute_error: 0.0772 Epoch 90: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 102ms/step - loss: 0.0097 - mean_squared_error: 0.0097 - mean_absolute_error: 0.0772 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0544 Epoch 91/100 20/20 [==============================] - ETA: 0s - loss: 0.0097 - mean_squared_error: 0.0097 - mean_absolute_error: 0.0764 Epoch 91: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 101ms/step - loss: 0.0097 - mean_squared_error: 0.0097 - mean_absolute_error: 0.0764 - val_loss: 0.0050 - val_mean_squared_error: 0.0050 - val_mean_absolute_error: 0.0551 Epoch 92/100 20/20 [==============================] - ETA: 0s - loss: 0.0100 - mean_squared_error: 0.0100 - mean_absolute_error: 0.0781 Epoch 92: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 105ms/step - loss: 0.0100 - mean_squared_error: 0.0100 - mean_absolute_error: 0.0781 - val_loss: 0.0049 - val_mean_squared_error: 0.0049 - val_mean_absolute_error: 0.0545 Epoch 93/100 20/20 [==============================] - ETA: 0s - loss: 0.0100 - mean_squared_error: 0.0100 - mean_absolute_error: 0.0780 Epoch 93: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 120ms/step - loss: 0.0100 - mean_squared_error: 0.0100 - mean_absolute_error: 0.0780 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0583 Epoch 94/100 20/20 [==============================] - ETA: 0s - loss: 0.0101 - mean_squared_error: 0.0101 - mean_absolute_error: 0.0784 Epoch 94: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 105ms/step - loss: 0.0101 - mean_squared_error: 0.0101 - mean_absolute_error: 0.0784 - val_loss: 0.0052 - val_mean_squared_error: 0.0052 - val_mean_absolute_error: 0.0548 Epoch 95/100 20/20 [==============================] - ETA: 0s - loss: 0.0103 - mean_squared_error: 0.0103 - mean_absolute_error: 0.0793 Epoch 95: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 115ms/step - loss: 0.0103 - mean_squared_error: 0.0103 - mean_absolute_error: 0.0793 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0564 Epoch 96/100 20/20 [==============================] - ETA: 0s - loss: 0.0101 - mean_squared_error: 0.0101 - mean_absolute_error: 0.0785 Epoch 96: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 106ms/step - loss: 0.0101 - mean_squared_error: 0.0101 - mean_absolute_error: 0.0785 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0574 Epoch 97/100 20/20 [==============================] - ETA: 0s - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0780 Epoch 97: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 92ms/step - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0780 - val_loss: 0.0049 - val_mean_squared_error: 0.0049 - val_mean_absolute_error: 0.0549 Epoch 98/100 20/20 [==============================] - ETA: 0s - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0776 Epoch 98: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 111ms/step - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0776 - val_loss: 0.0051 - val_mean_squared_error: 0.0051 - val_mean_absolute_error: 0.0556 Epoch 99/100 20/20 [==============================] - ETA: 0s - loss: 0.0096 - mean_squared_error: 0.0096 - mean_absolute_error: 0.0763 Epoch 99: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 117ms/step - loss: 0.0096 - mean_squared_error: 0.0096 - mean_absolute_error: 0.0763 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0538 Epoch 100/100 20/20 [==============================] - ETA: 0s - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0771 Epoch 100: val_loss did not improve from 0.00471 20/20 [==============================] - 2s 104ms/step - loss: 0.0099 - mean_squared_error: 0.0099 - mean_absolute_error: 0.0771 - val_loss: 0.0052 - val_mean_squared_error: 0.0052 - val_mean_absolute_error: 0.0561
model_evaluate_and_plot(model_sm3a,history_sm3b,X_test3b,y_test3b)
7/7 [==============================] - 0s 22ms/step - loss: 0.0053 - mean_squared_error: 0.0053 - mean_absolute_error: 0.0564 Loss: 0.005336812697350979 Mean Square Error: 0.005336812697350979 Mean Absolute Error: 0.056449633091688156 7/7 [==============================] - 0s 13ms/step Test R2 score: 0.941194143664118
model_evaluate_and_plot(model_sm3a,history_sm3b,X_test3a,y_test3a)
7/7 [==============================] - 0s 10ms/step - loss: 0.0051 - mean_squared_error: 0.0051 - mean_absolute_error: 0.0556 Loss: 0.005138309206813574 Mean Square Error: 0.005138309206813574 Mean Absolute Error: 0.05558069050312042 7/7 [==============================] - 0s 5ms/step Test R2 score: 0.9417554872329483
We are using a technique called incremental learning, where you gradually introduce new data to the model and update its weights accordingly. This can be a useful technique when working with large datasets or when the model needs to be updated with new data over time. In your case, you are splitting the training data into 5 folds of 1000 data points and training the model on each fold separately using a batch size of 32 and 100 epochs before introducing the next fold of data and updating the model weights. This approach can help to reduce the memory requirements of the model and allow for more frequent updates to the weights, which can lead to faster convergence and better generalization performance. However, it is important to note that the choice of batch size and number of epochs can have an impact on the performance of the model, and these parameters may need to be tuned for optimal performance
# build and compile a new model
model_sm3b=construct_new_small_cfs_model(15)
batch_size = 32
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_sm_X3b.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
# optionally Load saved weights into the model
model_sm3b.load_weights('cfs4_sm_X3a.h5')
model_sm3b.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
history_sm3b =model_sm3b.fit(X_train3c,y_train3c,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 18/20 [==========================>...] - ETA: 0s - loss: 0.2162 - mean_squared_error: 0.2162 - mean_absolute_error: 0.3446 Epoch 1: val_loss improved from inf to 0.07782, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 46ms/step - loss: 0.2092 - mean_squared_error: 0.2092 - mean_absolute_error: 0.3399 - val_loss: 0.0778 - val_mean_squared_error: 0.0778 - val_mean_absolute_error: 0.2166 Epoch 2/100 20/20 [==============================] - ETA: 0s - loss: 0.1302 - mean_squared_error: 0.1302 - mean_absolute_error: 0.2769 Epoch 2: val_loss improved from 0.07782 to 0.06996, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 30ms/step - loss: 0.1302 - mean_squared_error: 0.1302 - mean_absolute_error: 0.2769 - val_loss: 0.0700 - val_mean_squared_error: 0.0700 - val_mean_absolute_error: 0.2045 Epoch 3/100 19/20 [===========================>..] - ETA: 0s - loss: 0.1168 - mean_squared_error: 0.1168 - mean_absolute_error: 0.2620 Epoch 3: val_loss improved from 0.06996 to 0.05483, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 37ms/step - loss: 0.1166 - mean_squared_error: 0.1166 - mean_absolute_error: 0.2620 - val_loss: 0.0548 - val_mean_squared_error: 0.0548 - val_mean_absolute_error: 0.1834 Epoch 4/100 20/20 [==============================] - ETA: 0s - loss: 0.0984 - mean_squared_error: 0.0984 - mean_absolute_error: 0.2432 Epoch 4: val_loss improved from 0.05483 to 0.03827, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 45ms/step - loss: 0.0984 - mean_squared_error: 0.0984 - mean_absolute_error: 0.2432 - val_loss: 0.0383 - val_mean_squared_error: 0.0383 - val_mean_absolute_error: 0.1491 Epoch 5/100 20/20 [==============================] - ETA: 0s - loss: 0.0860 - mean_squared_error: 0.0860 - mean_absolute_error: 0.2278 Epoch 5: val_loss did not improve from 0.03827 20/20 [==============================] - 1s 47ms/step - loss: 0.0860 - mean_squared_error: 0.0860 - mean_absolute_error: 0.2278 - val_loss: 0.0412 - val_mean_squared_error: 0.0412 - val_mean_absolute_error: 0.1571 Epoch 6/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0823 - mean_squared_error: 0.0823 - mean_absolute_error: 0.2232 Epoch 6: val_loss did not improve from 0.03827 20/20 [==============================] - 1s 40ms/step - loss: 0.0833 - mean_squared_error: 0.0833 - mean_absolute_error: 0.2248 - val_loss: 0.0497 - val_mean_squared_error: 0.0497 - val_mean_absolute_error: 0.1720 Epoch 7/100 20/20 [==============================] - ETA: 0s - loss: 0.0754 - mean_squared_error: 0.0754 - mean_absolute_error: 0.2127 Epoch 7: val_loss improved from 0.03827 to 0.03296, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 59ms/step - loss: 0.0754 - mean_squared_error: 0.0754 - mean_absolute_error: 0.2127 - val_loss: 0.0330 - val_mean_squared_error: 0.0330 - val_mean_absolute_error: 0.1404 Epoch 8/100 20/20 [==============================] - ETA: 0s - loss: 0.0648 - mean_squared_error: 0.0648 - mean_absolute_error: 0.1969 Epoch 8: val_loss improved from 0.03296 to 0.02628, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 73ms/step - loss: 0.0648 - mean_squared_error: 0.0648 - mean_absolute_error: 0.1969 - val_loss: 0.0263 - val_mean_squared_error: 0.0263 - val_mean_absolute_error: 0.1285 Epoch 9/100 20/20 [==============================] - ETA: 0s - loss: 0.0601 - mean_squared_error: 0.0601 - mean_absolute_error: 0.1910 Epoch 9: val_loss improved from 0.02628 to 0.02326, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 70ms/step - loss: 0.0601 - mean_squared_error: 0.0601 - mean_absolute_error: 0.1910 - val_loss: 0.0233 - val_mean_squared_error: 0.0233 - val_mean_absolute_error: 0.1176 Epoch 10/100 20/20 [==============================] - ETA: 0s - loss: 0.0544 - mean_squared_error: 0.0544 - mean_absolute_error: 0.1813 Epoch 10: val_loss did not improve from 0.02326 20/20 [==============================] - 1s 65ms/step - loss: 0.0544 - mean_squared_error: 0.0544 - mean_absolute_error: 0.1813 - val_loss: 0.0246 - val_mean_squared_error: 0.0246 - val_mean_absolute_error: 0.1195 Epoch 11/100 20/20 [==============================] - ETA: 0s - loss: 0.0518 - mean_squared_error: 0.0518 - mean_absolute_error: 0.1770 Epoch 11: val_loss did not improve from 0.02326 20/20 [==============================] - 1s 67ms/step - loss: 0.0518 - mean_squared_error: 0.0518 - mean_absolute_error: 0.1770 - val_loss: 0.0235 - val_mean_squared_error: 0.0235 - val_mean_absolute_error: 0.1192 Epoch 12/100 20/20 [==============================] - ETA: 0s - loss: 0.0433 - mean_squared_error: 0.0433 - mean_absolute_error: 0.1616 Epoch 12: val_loss improved from 0.02326 to 0.01487, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 73ms/step - loss: 0.0433 - mean_squared_error: 0.0433 - mean_absolute_error: 0.1616 - val_loss: 0.0149 - val_mean_squared_error: 0.0149 - val_mean_absolute_error: 0.0946 Epoch 13/100 20/20 [==============================] - ETA: 0s - loss: 0.0406 - mean_squared_error: 0.0406 - mean_absolute_error: 0.1578 Epoch 13: val_loss did not improve from 0.01487 20/20 [==============================] - 2s 101ms/step - loss: 0.0406 - mean_squared_error: 0.0406 - mean_absolute_error: 0.1578 - val_loss: 0.0183 - val_mean_squared_error: 0.0183 - val_mean_absolute_error: 0.1046 Epoch 14/100 20/20 [==============================] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363 - mean_absolute_error: 0.1485 Epoch 14: val_loss improved from 0.01487 to 0.01341, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 104ms/step - loss: 0.0363 - mean_squared_error: 0.0363 - mean_absolute_error: 0.1485 - val_loss: 0.0134 - val_mean_squared_error: 0.0134 - val_mean_absolute_error: 0.0900 Epoch 15/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0325 - mean_squared_error: 0.0325 - mean_absolute_error: 0.1407 Epoch 15: val_loss improved from 0.01341 to 0.01096, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 92ms/step - loss: 0.0324 - mean_squared_error: 0.0324 - mean_absolute_error: 0.1404 - val_loss: 0.0110 - val_mean_squared_error: 0.0110 - val_mean_absolute_error: 0.0826 Epoch 16/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0299 - mean_squared_error: 0.0299 - mean_absolute_error: 0.1342 Epoch 16: val_loss did not improve from 0.01096 20/20 [==============================] - 1s 37ms/step - loss: 0.0297 - mean_squared_error: 0.0297 - mean_absolute_error: 0.1337 - val_loss: 0.0115 - val_mean_squared_error: 0.0115 - val_mean_absolute_error: 0.0837 Epoch 17/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1274 Epoch 17: val_loss improved from 0.01096 to 0.00928, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 37ms/step - loss: 0.0263 - mean_squared_error: 0.0263 - mean_absolute_error: 0.1272 - val_loss: 0.0093 - val_mean_squared_error: 0.0093 - val_mean_absolute_error: 0.0753 Epoch 18/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0235 - mean_squared_error: 0.0235 - mean_absolute_error: 0.1195 Epoch 18: val_loss improved from 0.00928 to 0.00867, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 52ms/step - loss: 0.0232 - mean_squared_error: 0.0232 - mean_absolute_error: 0.1189 - val_loss: 0.0087 - val_mean_squared_error: 0.0087 - val_mean_absolute_error: 0.0730 Epoch 19/100 20/20 [==============================] - ETA: 0s - loss: 0.0212 - mean_squared_error: 0.0212 - mean_absolute_error: 0.1141 Epoch 19: val_loss improved from 0.00867 to 0.00857, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 59ms/step - loss: 0.0212 - mean_squared_error: 0.0212 - mean_absolute_error: 0.1141 - val_loss: 0.0086 - val_mean_squared_error: 0.0086 - val_mean_absolute_error: 0.0728 Epoch 20/100 20/20 [==============================] - ETA: 0s - loss: 0.0196 - mean_squared_error: 0.0196 - mean_absolute_error: 0.1100 Epoch 20: val_loss improved from 0.00857 to 0.00802, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 70ms/step - loss: 0.0196 - mean_squared_error: 0.0196 - mean_absolute_error: 0.1100 - val_loss: 0.0080 - val_mean_squared_error: 0.0080 - val_mean_absolute_error: 0.0689 Epoch 21/100 20/20 [==============================] - ETA: 0s - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1040 Epoch 21: val_loss improved from 0.00802 to 0.00699, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 76ms/step - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1040 - val_loss: 0.0070 - val_mean_squared_error: 0.0070 - val_mean_absolute_error: 0.0660 Epoch 22/100 20/20 [==============================] - ETA: 0s - loss: 0.0157 - mean_squared_error: 0.0157 - mean_absolute_error: 0.0977 Epoch 22: val_loss improved from 0.00699 to 0.00646, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 66ms/step - loss: 0.0157 - mean_squared_error: 0.0157 - mean_absolute_error: 0.0977 - val_loss: 0.0065 - val_mean_squared_error: 0.0065 - val_mean_absolute_error: 0.0626 Epoch 23/100 20/20 [==============================] - ETA: 0s - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0930 Epoch 23: val_loss improved from 0.00646 to 0.00537, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 79ms/step - loss: 0.0141 - mean_squared_error: 0.0141 - mean_absolute_error: 0.0930 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0571 Epoch 24/100 20/20 [==============================] - ETA: 0s - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0891 Epoch 24: val_loss did not improve from 0.00537 20/20 [==============================] - 1s 71ms/step - loss: 0.0128 - mean_squared_error: 0.0128 - mean_absolute_error: 0.0891 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0579 Epoch 25/100 20/20 [==============================] - ETA: 0s - loss: 0.0119 - mean_squared_error: 0.0119 - mean_absolute_error: 0.0856 Epoch 25: val_loss improved from 0.00537 to 0.00480, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 73ms/step - loss: 0.0119 - mean_squared_error: 0.0119 - mean_absolute_error: 0.0856 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0542 Epoch 26/100 20/20 [==============================] - ETA: 0s - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0828 Epoch 26: val_loss did not improve from 0.00480 20/20 [==============================] - 2s 79ms/step - loss: 0.0111 - mean_squared_error: 0.0111 - mean_absolute_error: 0.0828 - val_loss: 0.0049 - val_mean_squared_error: 0.0049 - val_mean_absolute_error: 0.0544 Epoch 27/100 20/20 [==============================] - ETA: 0s - loss: 0.0103 - mean_squared_error: 0.0103 - mean_absolute_error: 0.0796 Epoch 27: val_loss improved from 0.00480 to 0.00403, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 71ms/step - loss: 0.0103 - mean_squared_error: 0.0103 - mean_absolute_error: 0.0796 - val_loss: 0.0040 - val_mean_squared_error: 0.0040 - val_mean_absolute_error: 0.0503 Epoch 28/100 20/20 [==============================] - ETA: 0s - loss: 0.0093 - mean_squared_error: 0.0093 - mean_absolute_error: 0.0762 Epoch 28: val_loss improved from 0.00403 to 0.00341, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 98ms/step - loss: 0.0093 - mean_squared_error: 0.0093 - mean_absolute_error: 0.0762 - val_loss: 0.0034 - val_mean_squared_error: 0.0034 - val_mean_absolute_error: 0.0461 Epoch 29/100 20/20 [==============================] - ETA: 0s - loss: 0.0086 - mean_squared_error: 0.0086 - mean_absolute_error: 0.0731 Epoch 29: val_loss improved from 0.00341 to 0.00311, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 103ms/step - loss: 0.0086 - mean_squared_error: 0.0086 - mean_absolute_error: 0.0731 - val_loss: 0.0031 - val_mean_squared_error: 0.0031 - val_mean_absolute_error: 0.0441 Epoch 30/100 20/20 [==============================] - ETA: 0s - loss: 0.0080 - mean_squared_error: 0.0080 - mean_absolute_error: 0.0701 Epoch 30: val_loss did not improve from 0.00311 20/20 [==============================] - 2s 103ms/step - loss: 0.0080 - mean_squared_error: 0.0080 - mean_absolute_error: 0.0701 - val_loss: 0.0036 - val_mean_squared_error: 0.0036 - val_mean_absolute_error: 0.0478 Epoch 31/100 20/20 [==============================] - ETA: 0s - loss: 0.0079 - mean_squared_error: 0.0079 - mean_absolute_error: 0.0695 Epoch 31: val_loss did not improve from 0.00311 20/20 [==============================] - 2s 104ms/step - loss: 0.0079 - mean_squared_error: 0.0079 - mean_absolute_error: 0.0695 - val_loss: 0.0035 - val_mean_squared_error: 0.0035 - val_mean_absolute_error: 0.0468 Epoch 32/100 20/20 [==============================] - ETA: 0s - loss: 0.0069 - mean_squared_error: 0.0069 - mean_absolute_error: 0.0652 Epoch 32: val_loss improved from 0.00311 to 0.00301, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 105ms/step - loss: 0.0069 - mean_squared_error: 0.0069 - mean_absolute_error: 0.0652 - val_loss: 0.0030 - val_mean_squared_error: 0.0030 - val_mean_absolute_error: 0.0433 Epoch 33/100 20/20 [==============================] - ETA: 0s - loss: 0.0067 - mean_squared_error: 0.0067 - mean_absolute_error: 0.0641 Epoch 33: val_loss did not improve from 0.00301 20/20 [==============================] - 2s 102ms/step - loss: 0.0067 - mean_squared_error: 0.0067 - mean_absolute_error: 0.0641 - val_loss: 0.0032 - val_mean_squared_error: 0.0032 - val_mean_absolute_error: 0.0451 Epoch 34/100 20/20 [==============================] - ETA: 0s - loss: 0.0062 - mean_squared_error: 0.0062 - mean_absolute_error: 0.0618 Epoch 34: val_loss improved from 0.00301 to 0.00262, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 103ms/step - loss: 0.0062 - mean_squared_error: 0.0062 - mean_absolute_error: 0.0618 - val_loss: 0.0026 - val_mean_squared_error: 0.0026 - val_mean_absolute_error: 0.0404 Epoch 35/100 20/20 [==============================] - ETA: 0s - loss: 0.0060 - mean_squared_error: 0.0060 - mean_absolute_error: 0.0608 Epoch 35: val_loss did not improve from 0.00262 20/20 [==============================] - 2s 103ms/step - loss: 0.0060 - mean_squared_error: 0.0060 - mean_absolute_error: 0.0608 - val_loss: 0.0026 - val_mean_squared_error: 0.0026 - val_mean_absolute_error: 0.0408 Epoch 36/100 20/20 [==============================] - ETA: 0s - loss: 0.0055 - mean_squared_error: 0.0055 - mean_absolute_error: 0.0584 Epoch 36: val_loss did not improve from 0.00262 20/20 [==============================] - 2s 108ms/step - loss: 0.0055 - mean_squared_error: 0.0055 - mean_absolute_error: 0.0584 - val_loss: 0.0030 - val_mean_squared_error: 0.0030 - val_mean_absolute_error: 0.0433 Epoch 37/100 20/20 [==============================] - ETA: 0s - loss: 0.0053 - mean_squared_error: 0.0053 - mean_absolute_error: 0.0577 Epoch 37: val_loss improved from 0.00262 to 0.00250, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 102ms/step - loss: 0.0053 - mean_squared_error: 0.0053 - mean_absolute_error: 0.0577 - val_loss: 0.0025 - val_mean_squared_error: 0.0025 - val_mean_absolute_error: 0.0393 Epoch 38/100 20/20 [==============================] - ETA: 0s - loss: 0.0050 - mean_squared_error: 0.0050 - mean_absolute_error: 0.0554 Epoch 38: val_loss improved from 0.00250 to 0.00227, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 107ms/step - loss: 0.0050 - mean_squared_error: 0.0050 - mean_absolute_error: 0.0554 - val_loss: 0.0023 - val_mean_squared_error: 0.0023 - val_mean_absolute_error: 0.0375 Epoch 39/100 20/20 [==============================] - ETA: 0s - loss: 0.0047 - mean_squared_error: 0.0047 - mean_absolute_error: 0.0540 Epoch 39: val_loss improved from 0.00227 to 0.00221, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 109ms/step - loss: 0.0047 - mean_squared_error: 0.0047 - mean_absolute_error: 0.0540 - val_loss: 0.0022 - val_mean_squared_error: 0.0022 - val_mean_absolute_error: 0.0371 Epoch 40/100 20/20 [==============================] - ETA: 0s - loss: 0.0046 - mean_squared_error: 0.0046 - mean_absolute_error: 0.0535 Epoch 40: val_loss improved from 0.00221 to 0.00198, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 106ms/step - loss: 0.0046 - mean_squared_error: 0.0046 - mean_absolute_error: 0.0535 - val_loss: 0.0020 - val_mean_squared_error: 0.0020 - val_mean_absolute_error: 0.0350 Epoch 41/100 20/20 [==============================] - ETA: 0s - loss: 0.0042 - mean_squared_error: 0.0042 - mean_absolute_error: 0.0507 Epoch 41: val_loss did not improve from 0.00198 20/20 [==============================] - 2s 103ms/step - loss: 0.0042 - mean_squared_error: 0.0042 - mean_absolute_error: 0.0507 - val_loss: 0.0020 - val_mean_squared_error: 0.0020 - val_mean_absolute_error: 0.0356 Epoch 42/100 20/20 [==============================] - ETA: 0s - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0502 Epoch 42: val_loss did not improve from 0.00198 20/20 [==============================] - 2s 115ms/step - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0502 - val_loss: 0.0023 - val_mean_squared_error: 0.0023 - val_mean_absolute_error: 0.0379 Epoch 43/100 20/20 [==============================] - ETA: 0s - loss: 0.0039 - mean_squared_error: 0.0039 - mean_absolute_error: 0.0490 Epoch 43: val_loss improved from 0.00198 to 0.00180, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 110ms/step - loss: 0.0039 - mean_squared_error: 0.0039 - mean_absolute_error: 0.0490 - val_loss: 0.0018 - val_mean_squared_error: 0.0018 - val_mean_absolute_error: 0.0332 Epoch 44/100 20/20 [==============================] - ETA: 0s - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0475 Epoch 44: val_loss improved from 0.00180 to 0.00174, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 99ms/step - loss: 0.0037 - mean_squared_error: 0.0037 - mean_absolute_error: 0.0475 - val_loss: 0.0017 - val_mean_squared_error: 0.0017 - val_mean_absolute_error: 0.0328 Epoch 45/100 20/20 [==============================] - ETA: 0s - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0468 Epoch 45: val_loss did not improve from 0.00174 20/20 [==============================] - 2s 83ms/step - loss: 0.0035 - mean_squared_error: 0.0035 - mean_absolute_error: 0.0468 - val_loss: 0.0018 - val_mean_squared_error: 0.0018 - val_mean_absolute_error: 0.0334 Epoch 46/100 20/20 [==============================] - ETA: 0s - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0460 Epoch 46: val_loss improved from 0.00174 to 0.00149, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 78ms/step - loss: 0.0034 - mean_squared_error: 0.0034 - mean_absolute_error: 0.0460 - val_loss: 0.0015 - val_mean_squared_error: 0.0015 - val_mean_absolute_error: 0.0299 Epoch 47/100 20/20 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0447 Epoch 47: val_loss did not improve from 0.00149 20/20 [==============================] - 2s 89ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0447 - val_loss: 0.0015 - val_mean_squared_error: 0.0015 - val_mean_absolute_error: 0.0306 Epoch 48/100 20/20 [==============================] - ETA: 0s - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0448 Epoch 48: val_loss did not improve from 0.00149 20/20 [==============================] - 2s 118ms/step - loss: 0.0032 - mean_squared_error: 0.0032 - mean_absolute_error: 0.0448 - val_loss: 0.0018 - val_mean_squared_error: 0.0018 - val_mean_absolute_error: 0.0330 Epoch 49/100 20/20 [==============================] - ETA: 0s - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0439 Epoch 49: val_loss improved from 0.00149 to 0.00143, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 104ms/step - loss: 0.0031 - mean_squared_error: 0.0031 - mean_absolute_error: 0.0439 - val_loss: 0.0014 - val_mean_squared_error: 0.0014 - val_mean_absolute_error: 0.0299 Epoch 50/100 20/20 [==============================] - ETA: 0s - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0429 Epoch 50: val_loss did not improve from 0.00143 20/20 [==============================] - 2s 98ms/step - loss: 0.0030 - mean_squared_error: 0.0030 - mean_absolute_error: 0.0429 - val_loss: 0.0017 - val_mean_squared_error: 0.0017 - val_mean_absolute_error: 0.0321 Epoch 51/100 20/20 [==============================] - ETA: 0s - loss: 0.0028 - mean_squared_error: 0.0028 - mean_absolute_error: 0.0415 Epoch 51: val_loss did not improve from 0.00143 20/20 [==============================] - 1s 73ms/step - loss: 0.0028 - mean_squared_error: 0.0028 - mean_absolute_error: 0.0415 - val_loss: 0.0016 - val_mean_squared_error: 0.0016 - val_mean_absolute_error: 0.0315 Epoch 52/100 20/20 [==============================] - ETA: 0s - loss: 0.0027 - mean_squared_error: 0.0027 - mean_absolute_error: 0.0409 Epoch 52: val_loss did not improve from 0.00143 20/20 [==============================] - 2s 78ms/step - loss: 0.0027 - mean_squared_error: 0.0027 - mean_absolute_error: 0.0409 - val_loss: 0.0015 - val_mean_squared_error: 0.0015 - val_mean_absolute_error: 0.0307 Epoch 53/100 20/20 [==============================] - ETA: 0s - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0392 Epoch 53: val_loss improved from 0.00143 to 0.00111, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 75ms/step - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0392 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0262 Epoch 54/100 20/20 [==============================] - ETA: 0s - loss: 0.0026 - mean_squared_error: 0.0026 - mean_absolute_error: 0.0401 Epoch 54: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 78ms/step - loss: 0.0026 - mean_squared_error: 0.0026 - mean_absolute_error: 0.0401 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0286 Epoch 55/100 20/20 [==============================] - ETA: 0s - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0394 Epoch 55: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 78ms/step - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0394 - val_loss: 0.0012 - val_mean_squared_error: 0.0012 - val_mean_absolute_error: 0.0263 Epoch 56/100 20/20 [==============================] - ETA: 0s - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0392 Epoch 56: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 87ms/step - loss: 0.0025 - mean_squared_error: 0.0025 - mean_absolute_error: 0.0392 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0264 Epoch 57/100 20/20 [==============================] - ETA: 0s - loss: 0.0024 - mean_squared_error: 0.0024 - mean_absolute_error: 0.0382 Epoch 57: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 90ms/step - loss: 0.0024 - mean_squared_error: 0.0024 - mean_absolute_error: 0.0382 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0286 Epoch 58/100 20/20 [==============================] - ETA: 0s - loss: 0.0023 - mean_squared_error: 0.0023 - mean_absolute_error: 0.0375 Epoch 58: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 111ms/step - loss: 0.0023 - mean_squared_error: 0.0023 - mean_absolute_error: 0.0375 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0290 Epoch 59/100 20/20 [==============================] - ETA: 0s - loss: 0.0022 - mean_squared_error: 0.0022 - mean_absolute_error: 0.0366 Epoch 59: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 112ms/step - loss: 0.0022 - mean_squared_error: 0.0022 - mean_absolute_error: 0.0366 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0269 Epoch 60/100 20/20 [==============================] - ETA: 0s - loss: 0.0021 - mean_squared_error: 0.0021 - mean_absolute_error: 0.0361 Epoch 60: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 115ms/step - loss: 0.0021 - mean_squared_error: 0.0021 - mean_absolute_error: 0.0361 - val_loss: 0.0012 - val_mean_squared_error: 0.0012 - val_mean_absolute_error: 0.0271 Epoch 61/100 20/20 [==============================] - ETA: 0s - loss: 0.0021 - mean_squared_error: 0.0021 - mean_absolute_error: 0.0357 Epoch 61: val_loss did not improve from 0.00111 20/20 [==============================] - 2s 116ms/step - loss: 0.0021 - mean_squared_error: 0.0021 - mean_absolute_error: 0.0357 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0280 Epoch 62/100 20/20 [==============================] - ETA: 0s - loss: 0.0020 - mean_squared_error: 0.0020 - mean_absolute_error: 0.0349 Epoch 62: val_loss improved from 0.00111 to 0.00090, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 108ms/step - loss: 0.0020 - mean_squared_error: 0.0020 - mean_absolute_error: 0.0349 - val_loss: 8.9654e-04 - val_mean_squared_error: 8.9654e-04 - val_mean_absolute_error: 0.0235 Epoch 63/100 20/20 [==============================] - ETA: 0s - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0339 Epoch 63: val_loss did not improve from 0.00090 20/20 [==============================] - 2s 107ms/step - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0339 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0286 Epoch 64/100 20/20 [==============================] - ETA: 0s - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0343 Epoch 64: val_loss did not improve from 0.00090 20/20 [==============================] - 2s 106ms/step - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0343 - val_loss: 0.0012 - val_mean_squared_error: 0.0012 - val_mean_absolute_error: 0.0281 Epoch 65/100 20/20 [==============================] - ETA: 0s - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0341 Epoch 65: val_loss improved from 0.00090 to 0.00086, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 107ms/step - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0341 - val_loss: 8.5854e-04 - val_mean_squared_error: 8.5854e-04 - val_mean_absolute_error: 0.0231 Epoch 66/100 20/20 [==============================] - ETA: 0s - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0343 Epoch 66: val_loss improved from 0.00086 to 0.00084, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 100ms/step - loss: 0.0019 - mean_squared_error: 0.0019 - mean_absolute_error: 0.0343 - val_loss: 8.4269e-04 - val_mean_squared_error: 8.4269e-04 - val_mean_absolute_error: 0.0227 Epoch 67/100 20/20 [==============================] - ETA: 0s - loss: 0.0018 - mean_squared_error: 0.0018 - mean_absolute_error: 0.0330 Epoch 67: val_loss did not improve from 0.00084 20/20 [==============================] - 2s 83ms/step - loss: 0.0018 - mean_squared_error: 0.0018 - mean_absolute_error: 0.0330 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0254 Epoch 68/100 20/20 [==============================] - ETA: 0s - loss: 0.0018 - mean_squared_error: 0.0018 - mean_absolute_error: 0.0332 Epoch 68: val_loss did not improve from 0.00084 20/20 [==============================] - 2s 88ms/step - loss: 0.0018 - mean_squared_error: 0.0018 - mean_absolute_error: 0.0332 - val_loss: 8.9057e-04 - val_mean_squared_error: 8.9057e-04 - val_mean_absolute_error: 0.0236 Epoch 69/100 20/20 [==============================] - ETA: 0s - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0327 Epoch 69: val_loss improved from 0.00084 to 0.00080, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 94ms/step - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0327 - val_loss: 7.9550e-04 - val_mean_squared_error: 7.9550e-04 - val_mean_absolute_error: 0.0224 Epoch 70/100 20/20 [==============================] - ETA: 0s - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0321 Epoch 70: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 69ms/step - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0321 - val_loss: 9.9353e-04 - val_mean_squared_error: 9.9353e-04 - val_mean_absolute_error: 0.0250 Epoch 71/100 20/20 [==============================] - ETA: 0s - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0327 Epoch 71: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 69ms/step - loss: 0.0017 - mean_squared_error: 0.0017 - mean_absolute_error: 0.0327 - val_loss: 0.0010 - val_mean_squared_error: 0.0010 - val_mean_absolute_error: 0.0256 Epoch 72/100 20/20 [==============================] - ETA: 0s - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0310 Epoch 72: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 68ms/step - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0310 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0264 Epoch 73/100 20/20 [==============================] - ETA: 0s - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0319 Epoch 73: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 68ms/step - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0319 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0258 Epoch 74/100 20/20 [==============================] - ETA: 0s - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0317 Epoch 74: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 73ms/step - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0317 - val_loss: 8.7309e-04 - val_mean_squared_error: 8.7309e-04 - val_mean_absolute_error: 0.0232 Epoch 75/100 20/20 [==============================] - ETA: 0s - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0316 Epoch 75: val_loss did not improve from 0.00080 20/20 [==============================] - 1s 71ms/step - loss: 0.0016 - mean_squared_error: 0.0016 - mean_absolute_error: 0.0316 - val_loss: 0.0013 - val_mean_squared_error: 0.0013 - val_mean_absolute_error: 0.0290 Epoch 76/100 20/20 [==============================] - ETA: 0s - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0305 Epoch 76: val_loss improved from 0.00080 to 0.00074, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 76ms/step - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0305 - val_loss: 7.4186e-04 - val_mean_squared_error: 7.4186e-04 - val_mean_absolute_error: 0.0211 Epoch 77/100 20/20 [==============================] - ETA: 0s - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0307 Epoch 77: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 70ms/step - loss: 0.0015 - mean_squared_error: 0.0015 - mean_absolute_error: 0.0307 - val_loss: 7.4244e-04 - val_mean_squared_error: 7.4244e-04 - val_mean_absolute_error: 0.0212 Epoch 78/100 20/20 [==============================] - ETA: 0s - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0298 Epoch 78: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 68ms/step - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0298 - val_loss: 8.0942e-04 - val_mean_squared_error: 8.0942e-04 - val_mean_absolute_error: 0.0224 Epoch 79/100 20/20 [==============================] - ETA: 0s - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0298 Epoch 79: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 69ms/step - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0298 - val_loss: 8.4684e-04 - val_mean_squared_error: 8.4684e-04 - val_mean_absolute_error: 0.0227 Epoch 80/100 20/20 [==============================] - ETA: 0s - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0296 Epoch 80: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 71ms/step - loss: 0.0014 - mean_squared_error: 0.0014 - mean_absolute_error: 0.0296 - val_loss: 9.1478e-04 - val_mean_squared_error: 9.1478e-04 - val_mean_absolute_error: 0.0239 Epoch 81/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0286 Epoch 81: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 71ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0286 - val_loss: 8.4332e-04 - val_mean_squared_error: 8.4332e-04 - val_mean_absolute_error: 0.0227 Epoch 82/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 Epoch 82: val_loss did not improve from 0.00074 20/20 [==============================] - 2s 108ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 - val_loss: 8.2820e-04 - val_mean_squared_error: 8.2820e-04 - val_mean_absolute_error: 0.0227 Epoch 83/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0287 Epoch 83: val_loss did not improve from 0.00074 20/20 [==============================] - 2s 78ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0287 - val_loss: 0.0010 - val_mean_squared_error: 0.0010 - val_mean_absolute_error: 0.0252 Epoch 84/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0284 Epoch 84: val_loss did not improve from 0.00074 20/20 [==============================] - 1s 73ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0284 - val_loss: 7.4806e-04 - val_mean_squared_error: 7.4806e-04 - val_mean_absolute_error: 0.0214 Epoch 85/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0288 Epoch 85: val_loss improved from 0.00074 to 0.00069, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 81ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0288 - val_loss: 6.8552e-04 - val_mean_squared_error: 6.8552e-04 - val_mean_absolute_error: 0.0203 Epoch 86/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 Epoch 86: val_loss did not improve from 0.00069 20/20 [==============================] - 2s 82ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 - val_loss: 7.6082e-04 - val_mean_squared_error: 7.6082e-04 - val_mean_absolute_error: 0.0218 Epoch 87/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0275 Epoch 87: val_loss did not improve from 0.00069 20/20 [==============================] - 1s 67ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0275 - val_loss: 8.9218e-04 - val_mean_squared_error: 8.9218e-04 - val_mean_absolute_error: 0.0235 Epoch 88/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 Epoch 88: val_loss did not improve from 0.00069 20/20 [==============================] - 2s 82ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 - val_loss: 7.1158e-04 - val_mean_squared_error: 7.1158e-04 - val_mean_absolute_error: 0.0209 Epoch 89/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 Epoch 89: val_loss did not improve from 0.00069 20/20 [==============================] - 2s 88ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 - val_loss: 8.0769e-04 - val_mean_squared_error: 8.0769e-04 - val_mean_absolute_error: 0.0222 Epoch 90/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0273 Epoch 90: val_loss did not improve from 0.00069 20/20 [==============================] - 2s 98ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0273 - val_loss: 8.0921e-04 - val_mean_squared_error: 8.0921e-04 - val_mean_absolute_error: 0.0223 Epoch 91/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0267 Epoch 91: val_loss improved from 0.00069 to 0.00062, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 108ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0267 - val_loss: 6.2151e-04 - val_mean_squared_error: 6.2151e-04 - val_mean_absolute_error: 0.0194 Epoch 92/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0270 Epoch 92: val_loss did not improve from 0.00062 20/20 [==============================] - 2s 95ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0270 - val_loss: 7.8643e-04 - val_mean_squared_error: 7.8643e-04 - val_mean_absolute_error: 0.0220 Epoch 93/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 Epoch 93: val_loss did not improve from 0.00062 20/20 [==============================] - 2s 92ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 - val_loss: 8.8162e-04 - val_mean_squared_error: 8.8162e-04 - val_mean_absolute_error: 0.0233 Epoch 94/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0263 Epoch 94: val_loss improved from 0.00062 to 0.00061, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 92ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0263 - val_loss: 6.1353e-04 - val_mean_squared_error: 6.1353e-04 - val_mean_absolute_error: 0.0193 Epoch 95/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0260 Epoch 95: val_loss did not improve from 0.00061 20/20 [==============================] - 2s 89ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0260 - val_loss: 7.0835e-04 - val_mean_squared_error: 7.0835e-04 - val_mean_absolute_error: 0.0208 Epoch 96/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 Epoch 96: val_loss did not improve from 0.00061 20/20 [==============================] - 2s 78ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 - val_loss: 0.0011 - val_mean_squared_error: 0.0011 - val_mean_absolute_error: 0.0264 Epoch 97/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0273 Epoch 97: val_loss did not improve from 0.00061 20/20 [==============================] - 1s 76ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0273 - val_loss: 9.8872e-04 - val_mean_squared_error: 9.8872e-04 - val_mean_absolute_error: 0.0250 Epoch 98/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0268 Epoch 98: val_loss did not improve from 0.00061 20/20 [==============================] - 1s 63ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0268 - val_loss: 8.1182e-04 - val_mean_squared_error: 8.1182e-04 - val_mean_absolute_error: 0.0224 Epoch 99/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0265 Epoch 99: val_loss did not improve from 0.00061 20/20 [==============================] - 2s 77ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0265 - val_loss: 7.0205e-04 - val_mean_squared_error: 7.0205e-04 - val_mean_absolute_error: 0.0209 Epoch 100/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 Epoch 100: val_loss did not improve from 0.00061 20/20 [==============================] - 1s 72ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 - val_loss: 6.1672e-04 - val_mean_squared_error: 6.1672e-04 - val_mean_absolute_error: 0.0194
model_evaluate_and_plot(model_sm3b,history_sm3b,X_test3c,y_test3c)
7/7 [==============================] - 0s 19ms/step - loss: 5.6348e-04 - mean_squared_error: 5.6348e-04 - mean_absolute_error: 0.0187 Loss: 0.0005634772242046893 Mean Square Error: 0.0005634772242046893 Mean Absolute Error: 0.018712718039751053 7/7 [==============================] - 0s 27ms/step Test R2 score: 0.9939006683943048
history_sm3d =model_sm3b.fit(X_train3d,y_train3d,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 Epoch 1: val_loss improved from 0.00061 to 0.00054, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 69ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0283 - val_loss: 5.4221e-04 - val_mean_squared_error: 5.4221e-04 - val_mean_absolute_error: 0.0181 Epoch 2/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 Epoch 2: val_loss did not improve from 0.00054 20/20 [==============================] - 2s 82ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 - val_loss: 6.2710e-04 - val_mean_squared_error: 6.2710e-04 - val_mean_absolute_error: 0.0196 Epoch 3/100 20/20 [==============================] - ETA: 0s - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 Epoch 3: val_loss did not improve from 0.00054 20/20 [==============================] - 1s 74ms/step - loss: 0.0013 - mean_squared_error: 0.0013 - mean_absolute_error: 0.0281 - val_loss: 9.5867e-04 - val_mean_squared_error: 9.5867e-04 - val_mean_absolute_error: 0.0244 Epoch 4/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0276 Epoch 4: val_loss did not improve from 0.00054 20/20 [==============================] - 1s 72ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0276 - val_loss: 7.8941e-04 - val_mean_squared_error: 7.8941e-04 - val_mean_absolute_error: 0.0222 Epoch 5/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 Epoch 5: val_loss did not improve from 0.00054 20/20 [==============================] - 1s 69ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0274 - val_loss: 6.4016e-04 - val_mean_squared_error: 6.4016e-04 - val_mean_absolute_error: 0.0195 Epoch 6/100 20/20 [==============================] - ETA: 0s - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0271 Epoch 6: val_loss improved from 0.00054 to 0.00049, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 77ms/step - loss: 0.0012 - mean_squared_error: 0.0012 - mean_absolute_error: 0.0271 - val_loss: 4.9251e-04 - val_mean_squared_error: 4.9251e-04 - val_mean_absolute_error: 0.0172 Epoch 7/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0259 Epoch 7: val_loss did not improve from 0.00049 20/20 [==============================] - 2s 80ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0259 - val_loss: 5.0475e-04 - val_mean_squared_error: 5.0475e-04 - val_mean_absolute_error: 0.0177 Epoch 8/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0257 Epoch 8: val_loss did not improve from 0.00049 20/20 [==============================] - 2s 83ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0257 - val_loss: 8.4217e-04 - val_mean_squared_error: 8.4217e-04 - val_mean_absolute_error: 0.0228 Epoch 9/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0263 Epoch 9: val_loss did not improve from 0.00049 20/20 [==============================] - 2s 76ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0263 - val_loss: 7.3626e-04 - val_mean_squared_error: 7.3626e-04 - val_mean_absolute_error: 0.0212 Epoch 10/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0258 Epoch 10: val_loss did not improve from 0.00049 20/20 [==============================] - 2s 95ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0258 - val_loss: 6.1048e-04 - val_mean_squared_error: 6.1048e-04 - val_mean_absolute_error: 0.0192 Epoch 11/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 Epoch 11: val_loss improved from 0.00049 to 0.00047, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 86ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 - val_loss: 4.7143e-04 - val_mean_squared_error: 4.7143e-04 - val_mean_absolute_error: 0.0167 Epoch 12/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0253 Epoch 12: val_loss did not improve from 0.00047 20/20 [==============================] - 2s 94ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0253 - val_loss: 4.9969e-04 - val_mean_squared_error: 4.9969e-04 - val_mean_absolute_error: 0.0174 Epoch 13/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 Epoch 13: val_loss did not improve from 0.00047 20/20 [==============================] - 2s 107ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 - val_loss: 6.7697e-04 - val_mean_squared_error: 6.7697e-04 - val_mean_absolute_error: 0.0204 Epoch 14/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 Epoch 14: val_loss did not improve from 0.00047 20/20 [==============================] - 2s 107ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 - val_loss: 6.1145e-04 - val_mean_squared_error: 6.1145e-04 - val_mean_absolute_error: 0.0192 Epoch 15/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 Epoch 15: val_loss did not improve from 0.00047 20/20 [==============================] - 2s 83ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0254 - val_loss: 5.4535e-04 - val_mean_squared_error: 5.4535e-04 - val_mean_absolute_error: 0.0180 Epoch 16/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0252 Epoch 16: val_loss did not improve from 0.00047 20/20 [==============================] - 2s 84ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0252 - val_loss: 5.6319e-04 - val_mean_squared_error: 5.6319e-04 - val_mean_absolute_error: 0.0185 Epoch 17/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0253 Epoch 17: val_loss improved from 0.00047 to 0.00046, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 111ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0253 - val_loss: 4.5900e-04 - val_mean_squared_error: 4.5900e-04 - val_mean_absolute_error: 0.0168 Epoch 18/100 20/20 [==============================] - ETA: 0s - loss: 9.7508e-04 - mean_squared_error: 9.7508e-04 - mean_absolute_error: 0.0246 Epoch 18: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 89ms/step - loss: 9.7508e-04 - mean_squared_error: 9.7508e-04 - mean_absolute_error: 0.0246 - val_loss: 4.6587e-04 - val_mean_squared_error: 4.6587e-04 - val_mean_absolute_error: 0.0169 Epoch 19/100 20/20 [==============================] - ETA: 0s - loss: 9.8422e-04 - mean_squared_error: 9.8422e-04 - mean_absolute_error: 0.0246 Epoch 19: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 91ms/step - loss: 9.8422e-04 - mean_squared_error: 9.8422e-04 - mean_absolute_error: 0.0246 - val_loss: 5.4244e-04 - val_mean_squared_error: 5.4244e-04 - val_mean_absolute_error: 0.0180 Epoch 20/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0247 Epoch 20: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 83ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0247 - val_loss: 5.1175e-04 - val_mean_squared_error: 5.1175e-04 - val_mean_absolute_error: 0.0175 Epoch 21/100 20/20 [==============================] - ETA: 0s - loss: 9.4604e-04 - mean_squared_error: 9.4604e-04 - mean_absolute_error: 0.0241 Epoch 21: val_loss did not improve from 0.00046 20/20 [==============================] - 1s 71ms/step - loss: 9.4604e-04 - mean_squared_error: 9.4604e-04 - mean_absolute_error: 0.0241 - val_loss: 5.0141e-04 - val_mean_squared_error: 5.0141e-04 - val_mean_absolute_error: 0.0175 Epoch 22/100 20/20 [==============================] - ETA: 0s - loss: 9.5722e-04 - mean_squared_error: 9.5722e-04 - mean_absolute_error: 0.0243 Epoch 22: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 77ms/step - loss: 9.5722e-04 - mean_squared_error: 9.5722e-04 - mean_absolute_error: 0.0243 - val_loss: 4.6627e-04 - val_mean_squared_error: 4.6627e-04 - val_mean_absolute_error: 0.0169 Epoch 23/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 Epoch 23: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 83ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0255 - val_loss: 5.1885e-04 - val_mean_squared_error: 5.1885e-04 - val_mean_absolute_error: 0.0176 Epoch 24/100 20/20 [==============================] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0249 Epoch 24: val_loss did not improve from 0.00046 20/20 [==============================] - 1s 74ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0249 - val_loss: 4.8605e-04 - val_mean_squared_error: 4.8605e-04 - val_mean_absolute_error: 0.0171 Epoch 25/100 20/20 [==============================] - ETA: 0s - loss: 9.7871e-04 - mean_squared_error: 9.7871e-04 - mean_absolute_error: 0.0246 Epoch 25: val_loss did not improve from 0.00046 20/20 [==============================] - 1s 69ms/step - loss: 9.7871e-04 - mean_squared_error: 9.7871e-04 - mean_absolute_error: 0.0246 - val_loss: 4.6586e-04 - val_mean_squared_error: 4.6586e-04 - val_mean_absolute_error: 0.0168 Epoch 26/100 20/20 [==============================] - ETA: 0s - loss: 9.0500e-04 - mean_squared_error: 9.0500e-04 - mean_absolute_error: 0.0238 Epoch 26: val_loss did not improve from 0.00046 20/20 [==============================] - 1s 72ms/step - loss: 9.0500e-04 - mean_squared_error: 9.0500e-04 - mean_absolute_error: 0.0238 - val_loss: 4.7280e-04 - val_mean_squared_error: 4.7280e-04 - val_mean_absolute_error: 0.0169 Epoch 27/100 20/20 [==============================] - ETA: 0s - loss: 9.3485e-04 - mean_squared_error: 9.3485e-04 - mean_absolute_error: 0.0239 Epoch 27: val_loss did not improve from 0.00046 20/20 [==============================] - 1s 73ms/step - loss: 9.3485e-04 - mean_squared_error: 9.3485e-04 - mean_absolute_error: 0.0239 - val_loss: 4.8499e-04 - val_mean_squared_error: 4.8499e-04 - val_mean_absolute_error: 0.0172 Epoch 28/100 20/20 [==============================] - ETA: 0s - loss: 9.3283e-04 - mean_squared_error: 9.3283e-04 - mean_absolute_error: 0.0239 Epoch 28: val_loss did not improve from 0.00046 20/20 [==============================] - 2s 88ms/step - loss: 9.3283e-04 - mean_squared_error: 9.3283e-04 - mean_absolute_error: 0.0239 - val_loss: 4.6157e-04 - val_mean_squared_error: 4.6157e-04 - val_mean_absolute_error: 0.0168 Epoch 29/100 20/20 [==============================] - ETA: 0s - loss: 9.4297e-04 - mean_squared_error: 9.4297e-04 - mean_absolute_error: 0.0241 Epoch 29: val_loss improved from 0.00046 to 0.00044, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 79ms/step - loss: 9.4297e-04 - mean_squared_error: 9.4297e-04 - mean_absolute_error: 0.0241 - val_loss: 4.4241e-04 - val_mean_squared_error: 4.4241e-04 - val_mean_absolute_error: 0.0164 Epoch 30/100 20/20 [==============================] - ETA: 0s - loss: 9.2045e-04 - mean_squared_error: 9.2045e-04 - mean_absolute_error: 0.0238 Epoch 30: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 62ms/step - loss: 9.2045e-04 - mean_squared_error: 9.2045e-04 - mean_absolute_error: 0.0238 - val_loss: 4.5135e-04 - val_mean_squared_error: 4.5135e-04 - val_mean_absolute_error: 0.0166 Epoch 31/100 20/20 [==============================] - ETA: 0s - loss: 9.3842e-04 - mean_squared_error: 9.3842e-04 - mean_absolute_error: 0.0241 Epoch 31: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 69ms/step - loss: 9.3842e-04 - mean_squared_error: 9.3842e-04 - mean_absolute_error: 0.0241 - val_loss: 4.8978e-04 - val_mean_squared_error: 4.8978e-04 - val_mean_absolute_error: 0.0171 Epoch 32/100 20/20 [==============================] - ETA: 0s - loss: 9.2596e-04 - mean_squared_error: 9.2596e-04 - mean_absolute_error: 0.0239 Epoch 32: val_loss improved from 0.00044 to 0.00044, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 69ms/step - loss: 9.2596e-04 - mean_squared_error: 9.2596e-04 - mean_absolute_error: 0.0239 - val_loss: 4.3656e-04 - val_mean_squared_error: 4.3656e-04 - val_mean_absolute_error: 0.0162 Epoch 33/100 20/20 [==============================] - ETA: 0s - loss: 8.7883e-04 - mean_squared_error: 8.7883e-04 - mean_absolute_error: 0.0232 Epoch 33: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 68ms/step - loss: 8.7883e-04 - mean_squared_error: 8.7883e-04 - mean_absolute_error: 0.0232 - val_loss: 4.5593e-04 - val_mean_squared_error: 4.5593e-04 - val_mean_absolute_error: 0.0167 Epoch 34/100 20/20 [==============================] - ETA: 0s - loss: 9.2546e-04 - mean_squared_error: 9.2546e-04 - mean_absolute_error: 0.0240 Epoch 34: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 63ms/step - loss: 9.2546e-04 - mean_squared_error: 9.2546e-04 - mean_absolute_error: 0.0240 - val_loss: 5.5648e-04 - val_mean_squared_error: 5.5648e-04 - val_mean_absolute_error: 0.0185 Epoch 35/100 19/20 [===========================>..] - ETA: 0s - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0250 Epoch 35: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 30ms/step - loss: 0.0010 - mean_squared_error: 0.0010 - mean_absolute_error: 0.0250 - val_loss: 6.2602e-04 - val_mean_squared_error: 6.2602e-04 - val_mean_absolute_error: 0.0199 Epoch 36/100 19/20 [===========================>..] - ETA: 0s - loss: 9.7953e-04 - mean_squared_error: 9.7953e-04 - mean_absolute_error: 0.0246 Epoch 36: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 31ms/step - loss: 9.7577e-04 - mean_squared_error: 9.7577e-04 - mean_absolute_error: 0.0245 - val_loss: 5.2393e-04 - val_mean_squared_error: 5.2393e-04 - val_mean_absolute_error: 0.0180 Epoch 37/100 19/20 [===========================>..] - ETA: 0s - loss: 9.0524e-04 - mean_squared_error: 9.0524e-04 - mean_absolute_error: 0.0236 Epoch 37: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 46ms/step - loss: 9.0210e-04 - mean_squared_error: 9.0210e-04 - mean_absolute_error: 0.0236 - val_loss: 5.4692e-04 - val_mean_squared_error: 5.4692e-04 - val_mean_absolute_error: 0.0181 Epoch 38/100 20/20 [==============================] - ETA: 0s - loss: 8.5931e-04 - mean_squared_error: 8.5931e-04 - mean_absolute_error: 0.0230 Epoch 38: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 75ms/step - loss: 8.5931e-04 - mean_squared_error: 8.5931e-04 - mean_absolute_error: 0.0230 - val_loss: 5.7581e-04 - val_mean_squared_error: 5.7581e-04 - val_mean_absolute_error: 0.0186 Epoch 39/100 20/20 [==============================] - ETA: 0s - loss: 8.5659e-04 - mean_squared_error: 8.5659e-04 - mean_absolute_error: 0.0231 Epoch 39: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 74ms/step - loss: 8.5659e-04 - mean_squared_error: 8.5659e-04 - mean_absolute_error: 0.0231 - val_loss: 5.4139e-04 - val_mean_squared_error: 5.4139e-04 - val_mean_absolute_error: 0.0180 Epoch 40/100 20/20 [==============================] - ETA: 0s - loss: 9.0693e-04 - mean_squared_error: 9.0693e-04 - mean_absolute_error: 0.0236 Epoch 40: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 75ms/step - loss: 9.0693e-04 - mean_squared_error: 9.0693e-04 - mean_absolute_error: 0.0236 - val_loss: 4.5705e-04 - val_mean_squared_error: 4.5705e-04 - val_mean_absolute_error: 0.0165 Epoch 41/100 20/20 [==============================] - ETA: 0s - loss: 9.3239e-04 - mean_squared_error: 9.3239e-04 - mean_absolute_error: 0.0241 Epoch 41: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 68ms/step - loss: 9.3239e-04 - mean_squared_error: 9.3239e-04 - mean_absolute_error: 0.0241 - val_loss: 4.6693e-04 - val_mean_squared_error: 4.6693e-04 - val_mean_absolute_error: 0.0167 Epoch 42/100 20/20 [==============================] - ETA: 0s - loss: 9.2509e-04 - mean_squared_error: 9.2509e-04 - mean_absolute_error: 0.0239 Epoch 42: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 75ms/step - loss: 9.2509e-04 - mean_squared_error: 9.2509e-04 - mean_absolute_error: 0.0239 - val_loss: 4.5438e-04 - val_mean_squared_error: 4.5438e-04 - val_mean_absolute_error: 0.0166 Epoch 43/100 20/20 [==============================] - ETA: 0s - loss: 8.9766e-04 - mean_squared_error: 8.9766e-04 - mean_absolute_error: 0.0235 Epoch 43: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 73ms/step - loss: 8.9766e-04 - mean_squared_error: 8.9766e-04 - mean_absolute_error: 0.0235 - val_loss: 4.9197e-04 - val_mean_squared_error: 4.9197e-04 - val_mean_absolute_error: 0.0173 Epoch 44/100 20/20 [==============================] - ETA: 0s - loss: 8.9264e-04 - mean_squared_error: 8.9264e-04 - mean_absolute_error: 0.0235 Epoch 44: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 74ms/step - loss: 8.9264e-04 - mean_squared_error: 8.9264e-04 - mean_absolute_error: 0.0235 - val_loss: 5.2790e-04 - val_mean_squared_error: 5.2790e-04 - val_mean_absolute_error: 0.0181 Epoch 45/100 20/20 [==============================] - ETA: 0s - loss: 8.5049e-04 - mean_squared_error: 8.5049e-04 - mean_absolute_error: 0.0229 Epoch 45: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 86ms/step - loss: 8.5049e-04 - mean_squared_error: 8.5049e-04 - mean_absolute_error: 0.0229 - val_loss: 4.5597e-04 - val_mean_squared_error: 4.5597e-04 - val_mean_absolute_error: 0.0168 Epoch 46/100 20/20 [==============================] - ETA: 0s - loss: 8.5423e-04 - mean_squared_error: 8.5423e-04 - mean_absolute_error: 0.0230 Epoch 46: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 88ms/step - loss: 8.5423e-04 - mean_squared_error: 8.5423e-04 - mean_absolute_error: 0.0230 - val_loss: 4.5094e-04 - val_mean_squared_error: 4.5094e-04 - val_mean_absolute_error: 0.0167 Epoch 47/100 20/20 [==============================] - ETA: 0s - loss: 8.4371e-04 - mean_squared_error: 8.4371e-04 - mean_absolute_error: 0.0228 Epoch 47: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 88ms/step - loss: 8.4371e-04 - mean_squared_error: 8.4371e-04 - mean_absolute_error: 0.0228 - val_loss: 4.6203e-04 - val_mean_squared_error: 4.6203e-04 - val_mean_absolute_error: 0.0165 Epoch 48/100 20/20 [==============================] - ETA: 0s - loss: 8.7149e-04 - mean_squared_error: 8.7149e-04 - mean_absolute_error: 0.0232 Epoch 48: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 90ms/step - loss: 8.7149e-04 - mean_squared_error: 8.7149e-04 - mean_absolute_error: 0.0232 - val_loss: 4.9909e-04 - val_mean_squared_error: 4.9909e-04 - val_mean_absolute_error: 0.0174 Epoch 49/100 20/20 [==============================] - ETA: 0s - loss: 8.7762e-04 - mean_squared_error: 8.7762e-04 - mean_absolute_error: 0.0232 Epoch 49: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 78ms/step - loss: 8.7762e-04 - mean_squared_error: 8.7762e-04 - mean_absolute_error: 0.0232 - val_loss: 4.5198e-04 - val_mean_squared_error: 4.5198e-04 - val_mean_absolute_error: 0.0167 Epoch 50/100 20/20 [==============================] - ETA: 0s - loss: 8.1892e-04 - mean_squared_error: 8.1892e-04 - mean_absolute_error: 0.0224 Epoch 50: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 79ms/step - loss: 8.1892e-04 - mean_squared_error: 8.1892e-04 - mean_absolute_error: 0.0224 - val_loss: 4.3800e-04 - val_mean_squared_error: 4.3800e-04 - val_mean_absolute_error: 0.0162 Epoch 51/100 20/20 [==============================] - ETA: 0s - loss: 8.9452e-04 - mean_squared_error: 8.9452e-04 - mean_absolute_error: 0.0235 Epoch 51: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 68ms/step - loss: 8.9452e-04 - mean_squared_error: 8.9452e-04 - mean_absolute_error: 0.0235 - val_loss: 4.6339e-04 - val_mean_squared_error: 4.6339e-04 - val_mean_absolute_error: 0.0166 Epoch 52/100 20/20 [==============================] - ETA: 0s - loss: 8.2977e-04 - mean_squared_error: 8.2977e-04 - mean_absolute_error: 0.0226 Epoch 52: val_loss did not improve from 0.00044 20/20 [==============================] - 1s 67ms/step - loss: 8.2977e-04 - mean_squared_error: 8.2977e-04 - mean_absolute_error: 0.0226 - val_loss: 5.4395e-04 - val_mean_squared_error: 5.4395e-04 - val_mean_absolute_error: 0.0181 Epoch 53/100 20/20 [==============================] - ETA: 0s - loss: 8.5374e-04 - mean_squared_error: 8.5374e-04 - mean_absolute_error: 0.0228 Epoch 53: val_loss did not improve from 0.00044 20/20 [==============================] - 2s 102ms/step - loss: 8.5374e-04 - mean_squared_error: 8.5374e-04 - mean_absolute_error: 0.0228 - val_loss: 4.3903e-04 - val_mean_squared_error: 4.3903e-04 - val_mean_absolute_error: 0.0162 Epoch 54/100 20/20 [==============================] - ETA: 0s - loss: 7.9184e-04 - mean_squared_error: 7.9184e-04 - mean_absolute_error: 0.0220 Epoch 54: val_loss improved from 0.00044 to 0.00043, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 71ms/step - loss: 7.9184e-04 - mean_squared_error: 7.9184e-04 - mean_absolute_error: 0.0220 - val_loss: 4.2815e-04 - val_mean_squared_error: 4.2815e-04 - val_mean_absolute_error: 0.0160 Epoch 55/100 20/20 [==============================] - ETA: 0s - loss: 8.7428e-04 - mean_squared_error: 8.7428e-04 - mean_absolute_error: 0.0231 Epoch 55: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 70ms/step - loss: 8.7428e-04 - mean_squared_error: 8.7428e-04 - mean_absolute_error: 0.0231 - val_loss: 4.3820e-04 - val_mean_squared_error: 4.3820e-04 - val_mean_absolute_error: 0.0163 Epoch 56/100 20/20 [==============================] - ETA: 0s - loss: 8.6502e-04 - mean_squared_error: 8.6502e-04 - mean_absolute_error: 0.0229 Epoch 56: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 77ms/step - loss: 8.6502e-04 - mean_squared_error: 8.6502e-04 - mean_absolute_error: 0.0229 - val_loss: 4.7234e-04 - val_mean_squared_error: 4.7234e-04 - val_mean_absolute_error: 0.0169 Epoch 57/100 20/20 [==============================] - ETA: 0s - loss: 8.3188e-04 - mean_squared_error: 8.3188e-04 - mean_absolute_error: 0.0227 Epoch 57: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 83ms/step - loss: 8.3188e-04 - mean_squared_error: 8.3188e-04 - mean_absolute_error: 0.0227 - val_loss: 6.6011e-04 - val_mean_squared_error: 6.6011e-04 - val_mean_absolute_error: 0.0199 Epoch 58/100 20/20 [==============================] - ETA: 0s - loss: 7.8923e-04 - mean_squared_error: 7.8923e-04 - mean_absolute_error: 0.0222 Epoch 58: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 85ms/step - loss: 7.8923e-04 - mean_squared_error: 7.8923e-04 - mean_absolute_error: 0.0222 - val_loss: 4.5281e-04 - val_mean_squared_error: 4.5281e-04 - val_mean_absolute_error: 0.0164 Epoch 59/100 20/20 [==============================] - ETA: 0s - loss: 8.3230e-04 - mean_squared_error: 8.3230e-04 - mean_absolute_error: 0.0226 Epoch 59: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 94ms/step - loss: 8.3230e-04 - mean_squared_error: 8.3230e-04 - mean_absolute_error: 0.0226 - val_loss: 5.8426e-04 - val_mean_squared_error: 5.8426e-04 - val_mean_absolute_error: 0.0186 Epoch 60/100 20/20 [==============================] - ETA: 0s - loss: 8.1425e-04 - mean_squared_error: 8.1425e-04 - mean_absolute_error: 0.0223 Epoch 60: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 80ms/step - loss: 8.1425e-04 - mean_squared_error: 8.1425e-04 - mean_absolute_error: 0.0223 - val_loss: 5.4477e-04 - val_mean_squared_error: 5.4477e-04 - val_mean_absolute_error: 0.0180 Epoch 61/100 20/20 [==============================] - ETA: 0s - loss: 8.1116e-04 - mean_squared_error: 8.1116e-04 - mean_absolute_error: 0.0223 Epoch 61: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 73ms/step - loss: 8.1116e-04 - mean_squared_error: 8.1116e-04 - mean_absolute_error: 0.0223 - val_loss: 5.2380e-04 - val_mean_squared_error: 5.2380e-04 - val_mean_absolute_error: 0.0177 Epoch 62/100 20/20 [==============================] - ETA: 0s - loss: 8.3219e-04 - mean_squared_error: 8.3219e-04 - mean_absolute_error: 0.0227 Epoch 62: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 79ms/step - loss: 8.3219e-04 - mean_squared_error: 8.3219e-04 - mean_absolute_error: 0.0227 - val_loss: 7.7823e-04 - val_mean_squared_error: 7.7823e-04 - val_mean_absolute_error: 0.0219 Epoch 63/100 20/20 [==============================] - ETA: 0s - loss: 8.2824e-04 - mean_squared_error: 8.2824e-04 - mean_absolute_error: 0.0225 Epoch 63: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 78ms/step - loss: 8.2824e-04 - mean_squared_error: 8.2824e-04 - mean_absolute_error: 0.0225 - val_loss: 5.1627e-04 - val_mean_squared_error: 5.1627e-04 - val_mean_absolute_error: 0.0180 Epoch 64/100 20/20 [==============================] - ETA: 0s - loss: 8.3739e-04 - mean_squared_error: 8.3739e-04 - mean_absolute_error: 0.0226 Epoch 64: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 70ms/step - loss: 8.3739e-04 - mean_squared_error: 8.3739e-04 - mean_absolute_error: 0.0226 - val_loss: 4.5625e-04 - val_mean_squared_error: 4.5625e-04 - val_mean_absolute_error: 0.0165 Epoch 65/100 20/20 [==============================] - ETA: 0s - loss: 8.2656e-04 - mean_squared_error: 8.2656e-04 - mean_absolute_error: 0.0225 Epoch 65: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 66ms/step - loss: 8.2656e-04 - mean_squared_error: 8.2656e-04 - mean_absolute_error: 0.0225 - val_loss: 4.4077e-04 - val_mean_squared_error: 4.4077e-04 - val_mean_absolute_error: 0.0166 Epoch 66/100 20/20 [==============================] - ETA: 0s - loss: 8.2112e-04 - mean_squared_error: 8.2112e-04 - mean_absolute_error: 0.0224 Epoch 66: val_loss improved from 0.00043 to 0.00043, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 67ms/step - loss: 8.2112e-04 - mean_squared_error: 8.2112e-04 - mean_absolute_error: 0.0224 - val_loss: 4.2566e-04 - val_mean_squared_error: 4.2566e-04 - val_mean_absolute_error: 0.0159 Epoch 67/100 20/20 [==============================] - ETA: 0s - loss: 8.3330e-04 - mean_squared_error: 8.3330e-04 - mean_absolute_error: 0.0226 Epoch 67: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 66ms/step - loss: 8.3330e-04 - mean_squared_error: 8.3330e-04 - mean_absolute_error: 0.0226 - val_loss: 6.7556e-04 - val_mean_squared_error: 6.7556e-04 - val_mean_absolute_error: 0.0202 Epoch 68/100 20/20 [==============================] - ETA: 0s - loss: 7.9007e-04 - mean_squared_error: 7.9007e-04 - mean_absolute_error: 0.0221 Epoch 68: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 73ms/step - loss: 7.9007e-04 - mean_squared_error: 7.9007e-04 - mean_absolute_error: 0.0221 - val_loss: 5.2714e-04 - val_mean_squared_error: 5.2714e-04 - val_mean_absolute_error: 0.0178 Epoch 69/100 20/20 [==============================] - ETA: 0s - loss: 8.5323e-04 - mean_squared_error: 8.5323e-04 - mean_absolute_error: 0.0228 Epoch 69: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 71ms/step - loss: 8.5323e-04 - mean_squared_error: 8.5323e-04 - mean_absolute_error: 0.0228 - val_loss: 4.5494e-04 - val_mean_squared_error: 4.5494e-04 - val_mean_absolute_error: 0.0164 Epoch 70/100 20/20 [==============================] - ETA: 0s - loss: 8.4838e-04 - mean_squared_error: 8.4838e-04 - mean_absolute_error: 0.0227 Epoch 70: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 69ms/step - loss: 8.4838e-04 - mean_squared_error: 8.4838e-04 - mean_absolute_error: 0.0227 - val_loss: 4.6305e-04 - val_mean_squared_error: 4.6305e-04 - val_mean_absolute_error: 0.0168 Epoch 71/100 20/20 [==============================] - ETA: 0s - loss: 8.5138e-04 - mean_squared_error: 8.5138e-04 - mean_absolute_error: 0.0229 Epoch 71: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 71ms/step - loss: 8.5138e-04 - mean_squared_error: 8.5138e-04 - mean_absolute_error: 0.0229 - val_loss: 5.1390e-04 - val_mean_squared_error: 5.1390e-04 - val_mean_absolute_error: 0.0178 Epoch 72/100 20/20 [==============================] - ETA: 0s - loss: 7.9027e-04 - mean_squared_error: 7.9027e-04 - mean_absolute_error: 0.0219 Epoch 72: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 65ms/step - loss: 7.9027e-04 - mean_squared_error: 7.9027e-04 - mean_absolute_error: 0.0219 - val_loss: 4.7412e-04 - val_mean_squared_error: 4.7412e-04 - val_mean_absolute_error: 0.0169 Epoch 73/100 20/20 [==============================] - ETA: 0s - loss: 7.5072e-04 - mean_squared_error: 7.5072e-04 - mean_absolute_error: 0.0216 Epoch 73: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 81ms/step - loss: 7.5072e-04 - mean_squared_error: 7.5072e-04 - mean_absolute_error: 0.0216 - val_loss: 5.0367e-04 - val_mean_squared_error: 5.0367e-04 - val_mean_absolute_error: 0.0172 Epoch 74/100 20/20 [==============================] - ETA: 0s - loss: 7.5745e-04 - mean_squared_error: 7.5745e-04 - mean_absolute_error: 0.0216 Epoch 74: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 67ms/step - loss: 7.5745e-04 - mean_squared_error: 7.5745e-04 - mean_absolute_error: 0.0216 - val_loss: 6.3400e-04 - val_mean_squared_error: 6.3400e-04 - val_mean_absolute_error: 0.0194 Epoch 75/100 20/20 [==============================] - ETA: 0s - loss: 8.2326e-04 - mean_squared_error: 8.2326e-04 - mean_absolute_error: 0.0226 Epoch 75: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 71ms/step - loss: 8.2326e-04 - mean_squared_error: 8.2326e-04 - mean_absolute_error: 0.0226 - val_loss: 4.4790e-04 - val_mean_squared_error: 4.4790e-04 - val_mean_absolute_error: 0.0163 Epoch 76/100 20/20 [==============================] - ETA: 0s - loss: 7.9763e-04 - mean_squared_error: 7.9763e-04 - mean_absolute_error: 0.0224 Epoch 76: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 73ms/step - loss: 7.9763e-04 - mean_squared_error: 7.9763e-04 - mean_absolute_error: 0.0224 - val_loss: 4.3986e-04 - val_mean_squared_error: 4.3986e-04 - val_mean_absolute_error: 0.0163 Epoch 77/100 20/20 [==============================] - ETA: 0s - loss: 7.7974e-04 - mean_squared_error: 7.7974e-04 - mean_absolute_error: 0.0218 Epoch 77: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 73ms/step - loss: 7.7974e-04 - mean_squared_error: 7.7974e-04 - mean_absolute_error: 0.0218 - val_loss: 5.1478e-04 - val_mean_squared_error: 5.1478e-04 - val_mean_absolute_error: 0.0180 Epoch 78/100 20/20 [==============================] - ETA: 0s - loss: 8.8329e-04 - mean_squared_error: 8.8329e-04 - mean_absolute_error: 0.0233 Epoch 78: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 90ms/step - loss: 8.8329e-04 - mean_squared_error: 8.8329e-04 - mean_absolute_error: 0.0233 - val_loss: 4.4780e-04 - val_mean_squared_error: 4.4780e-04 - val_mean_absolute_error: 0.0165 Epoch 79/100 20/20 [==============================] - ETA: 0s - loss: 7.6790e-04 - mean_squared_error: 7.6790e-04 - mean_absolute_error: 0.0217 Epoch 79: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 76ms/step - loss: 7.6790e-04 - mean_squared_error: 7.6790e-04 - mean_absolute_error: 0.0217 - val_loss: 4.6293e-04 - val_mean_squared_error: 4.6293e-04 - val_mean_absolute_error: 0.0164 Epoch 80/100 20/20 [==============================] - ETA: 0s - loss: 7.3062e-04 - mean_squared_error: 7.3062e-04 - mean_absolute_error: 0.0211 Epoch 80: val_loss did not improve from 0.00043 20/20 [==============================] - 2s 89ms/step - loss: 7.3062e-04 - mean_squared_error: 7.3062e-04 - mean_absolute_error: 0.0211 - val_loss: 4.5582e-04 - val_mean_squared_error: 4.5582e-04 - val_mean_absolute_error: 0.0165 Epoch 81/100 20/20 [==============================] - ETA: 0s - loss: 8.3317e-04 - mean_squared_error: 8.3317e-04 - mean_absolute_error: 0.0225 Epoch 81: val_loss did not improve from 0.00043 20/20 [==============================] - 1s 73ms/step - loss: 8.3317e-04 - mean_squared_error: 8.3317e-04 - mean_absolute_error: 0.0225 - val_loss: 4.5906e-04 - val_mean_squared_error: 4.5906e-04 - val_mean_absolute_error: 0.0166 Epoch 82/100 20/20 [==============================] - ETA: 0s - loss: 7.2760e-04 - mean_squared_error: 7.2760e-04 - mean_absolute_error: 0.0212 Epoch 82: val_loss improved from 0.00043 to 0.00040, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 80ms/step - loss: 7.2760e-04 - mean_squared_error: 7.2760e-04 - mean_absolute_error: 0.0212 - val_loss: 4.0424e-04 - val_mean_squared_error: 4.0424e-04 - val_mean_absolute_error: 0.0156 Epoch 83/100 20/20 [==============================] - ETA: 0s - loss: 8.0330e-04 - mean_squared_error: 8.0330e-04 - mean_absolute_error: 0.0223 Epoch 83: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 77ms/step - loss: 8.0330e-04 - mean_squared_error: 8.0330e-04 - mean_absolute_error: 0.0223 - val_loss: 4.2925e-04 - val_mean_squared_error: 4.2925e-04 - val_mean_absolute_error: 0.0161 Epoch 84/100 20/20 [==============================] - ETA: 0s - loss: 7.5078e-04 - mean_squared_error: 7.5078e-04 - mean_absolute_error: 0.0215 Epoch 84: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 75ms/step - loss: 7.5078e-04 - mean_squared_error: 7.5078e-04 - mean_absolute_error: 0.0215 - val_loss: 4.2942e-04 - val_mean_squared_error: 4.2942e-04 - val_mean_absolute_error: 0.0161 Epoch 85/100 20/20 [==============================] - ETA: 0s - loss: 7.2899e-04 - mean_squared_error: 7.2899e-04 - mean_absolute_error: 0.0213 Epoch 85: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 74ms/step - loss: 7.2899e-04 - mean_squared_error: 7.2899e-04 - mean_absolute_error: 0.0213 - val_loss: 4.2535e-04 - val_mean_squared_error: 4.2535e-04 - val_mean_absolute_error: 0.0162 Epoch 86/100 20/20 [==============================] - ETA: 0s - loss: 7.5304e-04 - mean_squared_error: 7.5304e-04 - mean_absolute_error: 0.0215 Epoch 86: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 75ms/step - loss: 7.5304e-04 - mean_squared_error: 7.5304e-04 - mean_absolute_error: 0.0215 - val_loss: 4.6740e-04 - val_mean_squared_error: 4.6740e-04 - val_mean_absolute_error: 0.0167 Epoch 87/100 20/20 [==============================] - ETA: 0s - loss: 7.0086e-04 - mean_squared_error: 7.0086e-04 - mean_absolute_error: 0.0208 Epoch 87: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 82ms/step - loss: 7.0086e-04 - mean_squared_error: 7.0086e-04 - mean_absolute_error: 0.0208 - val_loss: 4.5022e-04 - val_mean_squared_error: 4.5022e-04 - val_mean_absolute_error: 0.0164 Epoch 88/100 20/20 [==============================] - ETA: 0s - loss: 7.4586e-04 - mean_squared_error: 7.4586e-04 - mean_absolute_error: 0.0215 Epoch 88: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 70ms/step - loss: 7.4586e-04 - mean_squared_error: 7.4586e-04 - mean_absolute_error: 0.0215 - val_loss: 4.2602e-04 - val_mean_squared_error: 4.2602e-04 - val_mean_absolute_error: 0.0161 Epoch 89/100 20/20 [==============================] - ETA: 0s - loss: 7.6410e-04 - mean_squared_error: 7.6410e-04 - mean_absolute_error: 0.0217 Epoch 89: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 74ms/step - loss: 7.6410e-04 - mean_squared_error: 7.6410e-04 - mean_absolute_error: 0.0217 - val_loss: 4.3221e-04 - val_mean_squared_error: 4.3221e-04 - val_mean_absolute_error: 0.0162 Epoch 90/100 20/20 [==============================] - ETA: 0s - loss: 7.0553e-04 - mean_squared_error: 7.0553e-04 - mean_absolute_error: 0.0209 Epoch 90: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 75ms/step - loss: 7.0553e-04 - mean_squared_error: 7.0553e-04 - mean_absolute_error: 0.0209 - val_loss: 4.5665e-04 - val_mean_squared_error: 4.5665e-04 - val_mean_absolute_error: 0.0164 Epoch 91/100 20/20 [==============================] - ETA: 0s - loss: 7.3795e-04 - mean_squared_error: 7.3795e-04 - mean_absolute_error: 0.0213 Epoch 91: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 89ms/step - loss: 7.3795e-04 - mean_squared_error: 7.3795e-04 - mean_absolute_error: 0.0213 - val_loss: 4.1266e-04 - val_mean_squared_error: 4.1266e-04 - val_mean_absolute_error: 0.0157 Epoch 92/100 20/20 [==============================] - ETA: 0s - loss: 7.4861e-04 - mean_squared_error: 7.4861e-04 - mean_absolute_error: 0.0215 Epoch 92: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 77ms/step - loss: 7.4861e-04 - mean_squared_error: 7.4861e-04 - mean_absolute_error: 0.0215 - val_loss: 4.6774e-04 - val_mean_squared_error: 4.6774e-04 - val_mean_absolute_error: 0.0169 Epoch 93/100 20/20 [==============================] - ETA: 0s - loss: 7.2447e-04 - mean_squared_error: 7.2447e-04 - mean_absolute_error: 0.0209 Epoch 93: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 81ms/step - loss: 7.2447e-04 - mean_squared_error: 7.2447e-04 - mean_absolute_error: 0.0209 - val_loss: 4.3041e-04 - val_mean_squared_error: 4.3041e-04 - val_mean_absolute_error: 0.0160 Epoch 94/100 20/20 [==============================] - ETA: 0s - loss: 7.0544e-04 - mean_squared_error: 7.0544e-04 - mean_absolute_error: 0.0209 Epoch 94: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 83ms/step - loss: 7.0544e-04 - mean_squared_error: 7.0544e-04 - mean_absolute_error: 0.0209 - val_loss: 5.0528e-04 - val_mean_squared_error: 5.0528e-04 - val_mean_absolute_error: 0.0173 Epoch 95/100 20/20 [==============================] - ETA: 0s - loss: 7.0390e-04 - mean_squared_error: 7.0390e-04 - mean_absolute_error: 0.0209 Epoch 95: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 80ms/step - loss: 7.0390e-04 - mean_squared_error: 7.0390e-04 - mean_absolute_error: 0.0209 - val_loss: 4.3710e-04 - val_mean_squared_error: 4.3710e-04 - val_mean_absolute_error: 0.0162 Epoch 96/100 20/20 [==============================] - ETA: 0s - loss: 7.0173e-04 - mean_squared_error: 7.0173e-04 - mean_absolute_error: 0.0208 Epoch 96: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 90ms/step - loss: 7.0173e-04 - mean_squared_error: 7.0173e-04 - mean_absolute_error: 0.0208 - val_loss: 4.2522e-04 - val_mean_squared_error: 4.2522e-04 - val_mean_absolute_error: 0.0159 Epoch 97/100 20/20 [==============================] - ETA: 0s - loss: 7.3146e-04 - mean_squared_error: 7.3146e-04 - mean_absolute_error: 0.0211 Epoch 97: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 79ms/step - loss: 7.3146e-04 - mean_squared_error: 7.3146e-04 - mean_absolute_error: 0.0211 - val_loss: 4.3035e-04 - val_mean_squared_error: 4.3035e-04 - val_mean_absolute_error: 0.0162 Epoch 98/100 20/20 [==============================] - ETA: 0s - loss: 7.8905e-04 - mean_squared_error: 7.8905e-04 - mean_absolute_error: 0.0219 Epoch 98: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 77ms/step - loss: 7.8905e-04 - mean_squared_error: 7.8905e-04 - mean_absolute_error: 0.0219 - val_loss: 4.0985e-04 - val_mean_squared_error: 4.0985e-04 - val_mean_absolute_error: 0.0158 Epoch 99/100 20/20 [==============================] - ETA: 0s - loss: 8.1632e-04 - mean_squared_error: 8.1632e-04 - mean_absolute_error: 0.0224 Epoch 99: val_loss did not improve from 0.00040 20/20 [==============================] - 2s 79ms/step - loss: 8.1632e-04 - mean_squared_error: 8.1632e-04 - mean_absolute_error: 0.0224 - val_loss: 4.6841e-04 - val_mean_squared_error: 4.6841e-04 - val_mean_absolute_error: 0.0165 Epoch 100/100 20/20 [==============================] - ETA: 0s - loss: 7.8280e-04 - mean_squared_error: 7.8280e-04 - mean_absolute_error: 0.0218 Epoch 100: val_loss did not improve from 0.00040 20/20 [==============================] - 1s 67ms/step - loss: 7.8280e-04 - mean_squared_error: 7.8280e-04 - mean_absolute_error: 0.0218 - val_loss: 4.6557e-04 - val_mean_squared_error: 4.6557e-04 - val_mean_absolute_error: 0.0166
model_evaluate_and_plot(model_sm3b,history_sm3d,X_test3d,y_test3d)
7/7 [==============================] - 0s 25ms/step - loss: 4.2575e-04 - mean_squared_error: 4.2575e-04 - mean_absolute_error: 0.0160 Loss: 0.000425750098656863 Mean Square Error: 0.000425750098656863 Mean Absolute Error: 0.016029328107833862 7/7 [==============================] - 0s 25ms/step Test R2 score: 0.9952119018825233
history_sm3e =model_sm3b.fit(X_train3e,y_train3e,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 20/20 [==============================] - ETA: 0s - loss: 9.6579e-04 - mean_squared_error: 9.6579e-04 - mean_absolute_error: 0.0242 Epoch 1: val_loss improved from 0.00040 to 0.00037, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 75ms/step - loss: 9.6579e-04 - mean_squared_error: 9.6579e-04 - mean_absolute_error: 0.0242 - val_loss: 3.6791e-04 - val_mean_squared_error: 3.6791e-04 - val_mean_absolute_error: 0.0151 Epoch 2/100 20/20 [==============================] - ETA: 0s - loss: 8.9901e-04 - mean_squared_error: 8.9901e-04 - mean_absolute_error: 0.0235 Epoch 2: val_loss did not improve from 0.00037 20/20 [==============================] - 1s 74ms/step - loss: 8.9901e-04 - mean_squared_error: 8.9901e-04 - mean_absolute_error: 0.0235 - val_loss: 5.5868e-04 - val_mean_squared_error: 5.5868e-04 - val_mean_absolute_error: 0.0186 Epoch 3/100 20/20 [==============================] - ETA: 0s - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0257 Epoch 3: val_loss did not improve from 0.00037 20/20 [==============================] - 1s 74ms/step - loss: 0.0011 - mean_squared_error: 0.0011 - mean_absolute_error: 0.0257 - val_loss: 4.3354e-04 - val_mean_squared_error: 4.3354e-04 - val_mean_absolute_error: 0.0162 Epoch 4/100 20/20 [==============================] - ETA: 0s - loss: 9.3657e-04 - mean_squared_error: 9.3657e-04 - mean_absolute_error: 0.0240 Epoch 4: val_loss improved from 0.00037 to 0.00036, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 79ms/step - loss: 9.3657e-04 - mean_squared_error: 9.3657e-04 - mean_absolute_error: 0.0240 - val_loss: 3.6277e-04 - val_mean_squared_error: 3.6277e-04 - val_mean_absolute_error: 0.0149 Epoch 5/100 20/20 [==============================] - ETA: 0s - loss: 8.3700e-04 - mean_squared_error: 8.3700e-04 - mean_absolute_error: 0.0227 Epoch 5: val_loss did not improve from 0.00036 20/20 [==============================] - 2s 78ms/step - loss: 8.3700e-04 - mean_squared_error: 8.3700e-04 - mean_absolute_error: 0.0227 - val_loss: 3.8066e-04 - val_mean_squared_error: 3.8066e-04 - val_mean_absolute_error: 0.0153 Epoch 6/100 20/20 [==============================] - ETA: 0s - loss: 8.0566e-04 - mean_squared_error: 8.0566e-04 - mean_absolute_error: 0.0222 Epoch 6: val_loss did not improve from 0.00036 20/20 [==============================] - 2s 82ms/step - loss: 8.0566e-04 - mean_squared_error: 8.0566e-04 - mean_absolute_error: 0.0222 - val_loss: 4.2372e-04 - val_mean_squared_error: 4.2372e-04 - val_mean_absolute_error: 0.0162 Epoch 7/100 20/20 [==============================] - ETA: 0s - loss: 8.8356e-04 - mean_squared_error: 8.8356e-04 - mean_absolute_error: 0.0233 Epoch 7: val_loss did not improve from 0.00036 20/20 [==============================] - 2s 80ms/step - loss: 8.8356e-04 - mean_squared_error: 8.8356e-04 - mean_absolute_error: 0.0233 - val_loss: 3.7509e-04 - val_mean_squared_error: 3.7509e-04 - val_mean_absolute_error: 0.0152 Epoch 8/100 20/20 [==============================] - ETA: 0s - loss: 7.7571e-04 - mean_squared_error: 7.7571e-04 - mean_absolute_error: 0.0219 Epoch 8: val_loss improved from 0.00036 to 0.00034, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 75ms/step - loss: 7.7571e-04 - mean_squared_error: 7.7571e-04 - mean_absolute_error: 0.0219 - val_loss: 3.4142e-04 - val_mean_squared_error: 3.4142e-04 - val_mean_absolute_error: 0.0145 Epoch 9/100 20/20 [==============================] - ETA: 0s - loss: 8.1913e-04 - mean_squared_error: 8.1913e-04 - mean_absolute_error: 0.0224 Epoch 9: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 73ms/step - loss: 8.1913e-04 - mean_squared_error: 8.1913e-04 - mean_absolute_error: 0.0224 - val_loss: 3.4205e-04 - val_mean_squared_error: 3.4205e-04 - val_mean_absolute_error: 0.0146 Epoch 10/100 20/20 [==============================] - ETA: 0s - loss: 8.9375e-04 - mean_squared_error: 8.9375e-04 - mean_absolute_error: 0.0234 Epoch 10: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 60ms/step - loss: 8.9375e-04 - mean_squared_error: 8.9375e-04 - mean_absolute_error: 0.0234 - val_loss: 4.4826e-04 - val_mean_squared_error: 4.4826e-04 - val_mean_absolute_error: 0.0165 Epoch 11/100 20/20 [==============================] - ETA: 0s - loss: 9.1561e-04 - mean_squared_error: 9.1561e-04 - mean_absolute_error: 0.0236 Epoch 11: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 81ms/step - loss: 9.1561e-04 - mean_squared_error: 9.1561e-04 - mean_absolute_error: 0.0236 - val_loss: 4.6222e-04 - val_mean_squared_error: 4.6222e-04 - val_mean_absolute_error: 0.0169 Epoch 12/100 20/20 [==============================] - ETA: 0s - loss: 8.1214e-04 - mean_squared_error: 8.1214e-04 - mean_absolute_error: 0.0223 Epoch 12: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 110ms/step - loss: 8.1214e-04 - mean_squared_error: 8.1214e-04 - mean_absolute_error: 0.0223 - val_loss: 4.1746e-04 - val_mean_squared_error: 4.1746e-04 - val_mean_absolute_error: 0.0162 Epoch 13/100 20/20 [==============================] - ETA: 0s - loss: 8.3060e-04 - mean_squared_error: 8.3060e-04 - mean_absolute_error: 0.0227 Epoch 13: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 105ms/step - loss: 8.3060e-04 - mean_squared_error: 8.3060e-04 - mean_absolute_error: 0.0227 - val_loss: 3.9452e-04 - val_mean_squared_error: 3.9452e-04 - val_mean_absolute_error: 0.0157 Epoch 14/100 20/20 [==============================] - ETA: 0s - loss: 8.0901e-04 - mean_squared_error: 8.0901e-04 - mean_absolute_error: 0.0224 Epoch 14: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 114ms/step - loss: 8.0901e-04 - mean_squared_error: 8.0901e-04 - mean_absolute_error: 0.0224 - val_loss: 3.6516e-04 - val_mean_squared_error: 3.6516e-04 - val_mean_absolute_error: 0.0149 Epoch 15/100 20/20 [==============================] - ETA: 0s - loss: 7.6687e-04 - mean_squared_error: 7.6687e-04 - mean_absolute_error: 0.0216 Epoch 15: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 106ms/step - loss: 7.6687e-04 - mean_squared_error: 7.6687e-04 - mean_absolute_error: 0.0216 - val_loss: 4.0353e-04 - val_mean_squared_error: 4.0353e-04 - val_mean_absolute_error: 0.0156 Epoch 16/100 20/20 [==============================] - ETA: 0s - loss: 7.4736e-04 - mean_squared_error: 7.4736e-04 - mean_absolute_error: 0.0214 Epoch 16: val_loss improved from 0.00034 to 0.00034, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 108ms/step - loss: 7.4736e-04 - mean_squared_error: 7.4736e-04 - mean_absolute_error: 0.0214 - val_loss: 3.4028e-04 - val_mean_squared_error: 3.4028e-04 - val_mean_absolute_error: 0.0145 Epoch 17/100 20/20 [==============================] - ETA: 0s - loss: 7.6661e-04 - mean_squared_error: 7.6661e-04 - mean_absolute_error: 0.0217 Epoch 17: val_loss did not improve from 0.00034 20/20 [==============================] - 2s 75ms/step - loss: 7.6661e-04 - mean_squared_error: 7.6661e-04 - mean_absolute_error: 0.0217 - val_loss: 5.4056e-04 - val_mean_squared_error: 5.4056e-04 - val_mean_absolute_error: 0.0182 Epoch 18/100 20/20 [==============================] - ETA: 0s - loss: 8.5974e-04 - mean_squared_error: 8.5974e-04 - mean_absolute_error: 0.0229 Epoch 18: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 69ms/step - loss: 8.5974e-04 - mean_squared_error: 8.5974e-04 - mean_absolute_error: 0.0229 - val_loss: 5.4617e-04 - val_mean_squared_error: 5.4617e-04 - val_mean_absolute_error: 0.0184 Epoch 19/100 20/20 [==============================] - ETA: 0s - loss: 8.3747e-04 - mean_squared_error: 8.3747e-04 - mean_absolute_error: 0.0226 Epoch 19: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 68ms/step - loss: 8.3747e-04 - mean_squared_error: 8.3747e-04 - mean_absolute_error: 0.0226 - val_loss: 3.6702e-04 - val_mean_squared_error: 3.6702e-04 - val_mean_absolute_error: 0.0152 Epoch 20/100 20/20 [==============================] - ETA: 0s - loss: 7.6572e-04 - mean_squared_error: 7.6572e-04 - mean_absolute_error: 0.0216 Epoch 20: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 67ms/step - loss: 7.6572e-04 - mean_squared_error: 7.6572e-04 - mean_absolute_error: 0.0216 - val_loss: 3.4396e-04 - val_mean_squared_error: 3.4396e-04 - val_mean_absolute_error: 0.0146 Epoch 21/100 20/20 [==============================] - ETA: 0s - loss: 8.2862e-04 - mean_squared_error: 8.2862e-04 - mean_absolute_error: 0.0224 Epoch 21: val_loss improved from 0.00034 to 0.00034, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 1s 65ms/step - loss: 8.2862e-04 - mean_squared_error: 8.2862e-04 - mean_absolute_error: 0.0224 - val_loss: 3.3853e-04 - val_mean_squared_error: 3.3853e-04 - val_mean_absolute_error: 0.0145 Epoch 22/100 20/20 [==============================] - ETA: 0s - loss: 7.6201e-04 - mean_squared_error: 7.6201e-04 - mean_absolute_error: 0.0216 Epoch 22: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 71ms/step - loss: 7.6201e-04 - mean_squared_error: 7.6201e-04 - mean_absolute_error: 0.0216 - val_loss: 6.8660e-04 - val_mean_squared_error: 6.8660e-04 - val_mean_absolute_error: 0.0209 Epoch 23/100 20/20 [==============================] - ETA: 0s - loss: 8.5792e-04 - mean_squared_error: 8.5792e-04 - mean_absolute_error: 0.0230 Epoch 23: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 69ms/step - loss: 8.5792e-04 - mean_squared_error: 8.5792e-04 - mean_absolute_error: 0.0230 - val_loss: 5.3828e-04 - val_mean_squared_error: 5.3828e-04 - val_mean_absolute_error: 0.0183 Epoch 24/100 20/20 [==============================] - ETA: 0s - loss: 9.1940e-04 - mean_squared_error: 9.1940e-04 - mean_absolute_error: 0.0236 Epoch 24: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 66ms/step - loss: 9.1940e-04 - mean_squared_error: 9.1940e-04 - mean_absolute_error: 0.0236 - val_loss: 3.8254e-04 - val_mean_squared_error: 3.8254e-04 - val_mean_absolute_error: 0.0155 Epoch 25/100 20/20 [==============================] - ETA: 0s - loss: 7.8526e-04 - mean_squared_error: 7.8526e-04 - mean_absolute_error: 0.0220 Epoch 25: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 65ms/step - loss: 7.8526e-04 - mean_squared_error: 7.8526e-04 - mean_absolute_error: 0.0220 - val_loss: 4.2108e-04 - val_mean_squared_error: 4.2108e-04 - val_mean_absolute_error: 0.0161 Epoch 26/100 20/20 [==============================] - ETA: 0s - loss: 7.7493e-04 - mean_squared_error: 7.7493e-04 - mean_absolute_error: 0.0218 Epoch 26: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 67ms/step - loss: 7.7493e-04 - mean_squared_error: 7.7493e-04 - mean_absolute_error: 0.0218 - val_loss: 4.4851e-04 - val_mean_squared_error: 4.4851e-04 - val_mean_absolute_error: 0.0165 Epoch 27/100 20/20 [==============================] - ETA: 0s - loss: 7.9280e-04 - mean_squared_error: 7.9280e-04 - mean_absolute_error: 0.0221 Epoch 27: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 67ms/step - loss: 7.9280e-04 - mean_squared_error: 7.9280e-04 - mean_absolute_error: 0.0221 - val_loss: 7.0075e-04 - val_mean_squared_error: 7.0075e-04 - val_mean_absolute_error: 0.0211 Epoch 28/100 20/20 [==============================] - ETA: 0s - loss: 7.6358e-04 - mean_squared_error: 7.6358e-04 - mean_absolute_error: 0.0215 Epoch 28: val_loss did not improve from 0.00034 20/20 [==============================] - 1s 73ms/step - loss: 7.6358e-04 - mean_squared_error: 7.6358e-04 - mean_absolute_error: 0.0215 - val_loss: 3.4694e-04 - val_mean_squared_error: 3.4694e-04 - val_mean_absolute_error: 0.0147 Epoch 29/100 20/20 [==============================] - ETA: 0s - loss: 7.4623e-04 - mean_squared_error: 7.4623e-04 - mean_absolute_error: 0.0214 Epoch 29: val_loss improved from 0.00034 to 0.00033, saving model to cfs4_sm_X3b.h5 20/20 [==============================] - 2s 79ms/step - loss: 7.4623e-04 - mean_squared_error: 7.4623e-04 - mean_absolute_error: 0.0214 - val_loss: 3.2886e-04 - val_mean_squared_error: 3.2886e-04 - val_mean_absolute_error: 0.0143 Epoch 30/100 20/20 [==============================] - ETA: 0s - loss: 7.8014e-04 - mean_squared_error: 7.8014e-04 - mean_absolute_error: 0.0218 Epoch 30: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 81ms/step - loss: 7.8014e-04 - mean_squared_error: 7.8014e-04 - mean_absolute_error: 0.0218 - val_loss: 3.5850e-04 - val_mean_squared_error: 3.5850e-04 - val_mean_absolute_error: 0.0151 Epoch 31/100 20/20 [==============================] - ETA: 0s - loss: 8.9591e-04 - mean_squared_error: 8.9591e-04 - mean_absolute_error: 0.0234 Epoch 31: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 8.9591e-04 - mean_squared_error: 8.9591e-04 - mean_absolute_error: 0.0234 - val_loss: 4.0762e-04 - val_mean_squared_error: 4.0762e-04 - val_mean_absolute_error: 0.0159 Epoch 32/100 20/20 [==============================] - ETA: 0s - loss: 9.2895e-04 - mean_squared_error: 9.2895e-04 - mean_absolute_error: 0.0237 Epoch 32: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 104ms/step - loss: 9.2895e-04 - mean_squared_error: 9.2895e-04 - mean_absolute_error: 0.0237 - val_loss: 8.6890e-04 - val_mean_squared_error: 8.6890e-04 - val_mean_absolute_error: 0.0235 Epoch 33/100 20/20 [==============================] - ETA: 0s - loss: 9.0144e-04 - mean_squared_error: 9.0144e-04 - mean_absolute_error: 0.0234 Epoch 33: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 114ms/step - loss: 9.0144e-04 - mean_squared_error: 9.0144e-04 - mean_absolute_error: 0.0234 - val_loss: 3.8618e-04 - val_mean_squared_error: 3.8618e-04 - val_mean_absolute_error: 0.0153 Epoch 34/100 20/20 [==============================] - ETA: 0s - loss: 7.7380e-04 - mean_squared_error: 7.7380e-04 - mean_absolute_error: 0.0218 Epoch 34: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 117ms/step - loss: 7.7380e-04 - mean_squared_error: 7.7380e-04 - mean_absolute_error: 0.0218 - val_loss: 3.4673e-04 - val_mean_squared_error: 3.4673e-04 - val_mean_absolute_error: 0.0146 Epoch 35/100 20/20 [==============================] - ETA: 0s - loss: 7.4671e-04 - mean_squared_error: 7.4671e-04 - mean_absolute_error: 0.0214 Epoch 35: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 92ms/step - loss: 7.4671e-04 - mean_squared_error: 7.4671e-04 - mean_absolute_error: 0.0214 - val_loss: 3.4059e-04 - val_mean_squared_error: 3.4059e-04 - val_mean_absolute_error: 0.0147 Epoch 36/100 20/20 [==============================] - ETA: 0s - loss: 6.8913e-04 - mean_squared_error: 6.8913e-04 - mean_absolute_error: 0.0206 Epoch 36: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 105ms/step - loss: 6.8913e-04 - mean_squared_error: 6.8913e-04 - mean_absolute_error: 0.0206 - val_loss: 3.3639e-04 - val_mean_squared_error: 3.3639e-04 - val_mean_absolute_error: 0.0145 Epoch 37/100 20/20 [==============================] - ETA: 0s - loss: 7.1336e-04 - mean_squared_error: 7.1336e-04 - mean_absolute_error: 0.0210 Epoch 37: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 96ms/step - loss: 7.1336e-04 - mean_squared_error: 7.1336e-04 - mean_absolute_error: 0.0210 - val_loss: 3.4101e-04 - val_mean_squared_error: 3.4101e-04 - val_mean_absolute_error: 0.0143 Epoch 38/100 20/20 [==============================] - ETA: 0s - loss: 7.0096e-04 - mean_squared_error: 7.0096e-04 - mean_absolute_error: 0.0207 Epoch 38: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 109ms/step - loss: 7.0096e-04 - mean_squared_error: 7.0096e-04 - mean_absolute_error: 0.0207 - val_loss: 3.4355e-04 - val_mean_squared_error: 3.4355e-04 - val_mean_absolute_error: 0.0145 Epoch 39/100 20/20 [==============================] - ETA: 0s - loss: 6.9518e-04 - mean_squared_error: 6.9518e-04 - mean_absolute_error: 0.0206 Epoch 39: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 99ms/step - loss: 6.9518e-04 - mean_squared_error: 6.9518e-04 - mean_absolute_error: 0.0206 - val_loss: 3.4926e-04 - val_mean_squared_error: 3.4926e-04 - val_mean_absolute_error: 0.0145 Epoch 40/100 20/20 [==============================] - ETA: 0s - loss: 7.2017e-04 - mean_squared_error: 7.2017e-04 - mean_absolute_error: 0.0210 Epoch 40: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 95ms/step - loss: 7.2017e-04 - mean_squared_error: 7.2017e-04 - mean_absolute_error: 0.0210 - val_loss: 3.4654e-04 - val_mean_squared_error: 3.4654e-04 - val_mean_absolute_error: 0.0146 Epoch 41/100 20/20 [==============================] - ETA: 0s - loss: 7.0598e-04 - mean_squared_error: 7.0598e-04 - mean_absolute_error: 0.0209 Epoch 41: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 95ms/step - loss: 7.0598e-04 - mean_squared_error: 7.0598e-04 - mean_absolute_error: 0.0209 - val_loss: 5.2743e-04 - val_mean_squared_error: 5.2743e-04 - val_mean_absolute_error: 0.0180 Epoch 42/100 20/20 [==============================] - ETA: 0s - loss: 6.9082e-04 - mean_squared_error: 6.9082e-04 - mean_absolute_error: 0.0206 Epoch 42: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 99ms/step - loss: 6.9082e-04 - mean_squared_error: 6.9082e-04 - mean_absolute_error: 0.0206 - val_loss: 4.2162e-04 - val_mean_squared_error: 4.2162e-04 - val_mean_absolute_error: 0.0161 Epoch 43/100 20/20 [==============================] - ETA: 0s - loss: 6.5373e-04 - mean_squared_error: 6.5373e-04 - mean_absolute_error: 0.0200 Epoch 43: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 107ms/step - loss: 6.5373e-04 - mean_squared_error: 6.5373e-04 - mean_absolute_error: 0.0200 - val_loss: 3.5187e-04 - val_mean_squared_error: 3.5187e-04 - val_mean_absolute_error: 0.0147 Epoch 44/100 20/20 [==============================] - ETA: 0s - loss: 7.1516e-04 - mean_squared_error: 7.1516e-04 - mean_absolute_error: 0.0209 Epoch 44: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 113ms/step - loss: 7.1516e-04 - mean_squared_error: 7.1516e-04 - mean_absolute_error: 0.0209 - val_loss: 5.2496e-04 - val_mean_squared_error: 5.2496e-04 - val_mean_absolute_error: 0.0181 Epoch 45/100 20/20 [==============================] - ETA: 0s - loss: 7.3641e-04 - mean_squared_error: 7.3641e-04 - mean_absolute_error: 0.0213 Epoch 45: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 115ms/step - loss: 7.3641e-04 - mean_squared_error: 7.3641e-04 - mean_absolute_error: 0.0213 - val_loss: 4.4328e-04 - val_mean_squared_error: 4.4328e-04 - val_mean_absolute_error: 0.0165 Epoch 46/100 20/20 [==============================] - ETA: 0s - loss: 7.4348e-04 - mean_squared_error: 7.4348e-04 - mean_absolute_error: 0.0213 Epoch 46: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 109ms/step - loss: 7.4348e-04 - mean_squared_error: 7.4348e-04 - mean_absolute_error: 0.0213 - val_loss: 4.8913e-04 - val_mean_squared_error: 4.8913e-04 - val_mean_absolute_error: 0.0172 Epoch 47/100 20/20 [==============================] - ETA: 0s - loss: 8.2089e-04 - mean_squared_error: 8.2089e-04 - mean_absolute_error: 0.0225 Epoch 47: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 111ms/step - loss: 8.2089e-04 - mean_squared_error: 8.2089e-04 - mean_absolute_error: 0.0225 - val_loss: 8.6896e-04 - val_mean_squared_error: 8.6896e-04 - val_mean_absolute_error: 0.0236 Epoch 48/100 20/20 [==============================] - ETA: 0s - loss: 7.8271e-04 - mean_squared_error: 7.8271e-04 - mean_absolute_error: 0.0219 Epoch 48: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 117ms/step - loss: 7.8271e-04 - mean_squared_error: 7.8271e-04 - mean_absolute_error: 0.0219 - val_loss: 4.8945e-04 - val_mean_squared_error: 4.8945e-04 - val_mean_absolute_error: 0.0174 Epoch 49/100 20/20 [==============================] - ETA: 0s - loss: 6.8469e-04 - mean_squared_error: 6.8469e-04 - mean_absolute_error: 0.0205 Epoch 49: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 113ms/step - loss: 6.8469e-04 - mean_squared_error: 6.8469e-04 - mean_absolute_error: 0.0205 - val_loss: 6.2214e-04 - val_mean_squared_error: 6.2214e-04 - val_mean_absolute_error: 0.0197 Epoch 50/100 20/20 [==============================] - ETA: 0s - loss: 7.5218e-04 - mean_squared_error: 7.5218e-04 - mean_absolute_error: 0.0215 Epoch 50: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 115ms/step - loss: 7.5218e-04 - mean_squared_error: 7.5218e-04 - mean_absolute_error: 0.0215 - val_loss: 6.9234e-04 - val_mean_squared_error: 6.9234e-04 - val_mean_absolute_error: 0.0207 Epoch 51/100 20/20 [==============================] - ETA: 0s - loss: 6.7967e-04 - mean_squared_error: 6.7967e-04 - mean_absolute_error: 0.0204 Epoch 51: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 99ms/step - loss: 6.7967e-04 - mean_squared_error: 6.7967e-04 - mean_absolute_error: 0.0204 - val_loss: 3.5626e-04 - val_mean_squared_error: 3.5626e-04 - val_mean_absolute_error: 0.0149 Epoch 52/100 20/20 [==============================] - ETA: 0s - loss: 7.1536e-04 - mean_squared_error: 7.1536e-04 - mean_absolute_error: 0.0209 Epoch 52: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 108ms/step - loss: 7.1536e-04 - mean_squared_error: 7.1536e-04 - mean_absolute_error: 0.0209 - val_loss: 3.8607e-04 - val_mean_squared_error: 3.8607e-04 - val_mean_absolute_error: 0.0154 Epoch 53/100 20/20 [==============================] - ETA: 0s - loss: 7.5797e-04 - mean_squared_error: 7.5797e-04 - mean_absolute_error: 0.0214 Epoch 53: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 101ms/step - loss: 7.5797e-04 - mean_squared_error: 7.5797e-04 - mean_absolute_error: 0.0214 - val_loss: 3.4834e-04 - val_mean_squared_error: 3.4834e-04 - val_mean_absolute_error: 0.0147 Epoch 54/100 20/20 [==============================] - ETA: 0s - loss: 6.9884e-04 - mean_squared_error: 6.9884e-04 - mean_absolute_error: 0.0206 Epoch 54: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 75ms/step - loss: 6.9884e-04 - mean_squared_error: 6.9884e-04 - mean_absolute_error: 0.0206 - val_loss: 3.4651e-04 - val_mean_squared_error: 3.4651e-04 - val_mean_absolute_error: 0.0147 Epoch 55/100 20/20 [==============================] - ETA: 0s - loss: 7.0836e-04 - mean_squared_error: 7.0836e-04 - mean_absolute_error: 0.0209 Epoch 55: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 96ms/step - loss: 7.0836e-04 - mean_squared_error: 7.0836e-04 - mean_absolute_error: 0.0209 - val_loss: 3.3199e-04 - val_mean_squared_error: 3.3199e-04 - val_mean_absolute_error: 0.0142 Epoch 56/100 20/20 [==============================] - ETA: 0s - loss: 7.0777e-04 - mean_squared_error: 7.0777e-04 - mean_absolute_error: 0.0209 Epoch 56: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 89ms/step - loss: 7.0777e-04 - mean_squared_error: 7.0777e-04 - mean_absolute_error: 0.0209 - val_loss: 5.0891e-04 - val_mean_squared_error: 5.0891e-04 - val_mean_absolute_error: 0.0176 Epoch 57/100 20/20 [==============================] - ETA: 0s - loss: 7.6769e-04 - mean_squared_error: 7.6769e-04 - mean_absolute_error: 0.0216 Epoch 57: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 7.6769e-04 - mean_squared_error: 7.6769e-04 - mean_absolute_error: 0.0216 - val_loss: 3.7783e-04 - val_mean_squared_error: 3.7783e-04 - val_mean_absolute_error: 0.0151 Epoch 58/100 20/20 [==============================] - ETA: 0s - loss: 6.4050e-04 - mean_squared_error: 6.4050e-04 - mean_absolute_error: 0.0199 Epoch 58: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 6.4050e-04 - mean_squared_error: 6.4050e-04 - mean_absolute_error: 0.0199 - val_loss: 4.0818e-04 - val_mean_squared_error: 4.0818e-04 - val_mean_absolute_error: 0.0157 Epoch 59/100 20/20 [==============================] - ETA: 0s - loss: 6.7653e-04 - mean_squared_error: 6.7653e-04 - mean_absolute_error: 0.0203 Epoch 59: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 94ms/step - loss: 6.7653e-04 - mean_squared_error: 6.7653e-04 - mean_absolute_error: 0.0203 - val_loss: 3.7465e-04 - val_mean_squared_error: 3.7465e-04 - val_mean_absolute_error: 0.0151 Epoch 60/100 20/20 [==============================] - ETA: 0s - loss: 7.4239e-04 - mean_squared_error: 7.4239e-04 - mean_absolute_error: 0.0212 Epoch 60: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 98ms/step - loss: 7.4239e-04 - mean_squared_error: 7.4239e-04 - mean_absolute_error: 0.0212 - val_loss: 4.2005e-04 - val_mean_squared_error: 4.2005e-04 - val_mean_absolute_error: 0.0160 Epoch 61/100 20/20 [==============================] - ETA: 0s - loss: 5.9955e-04 - mean_squared_error: 5.9955e-04 - mean_absolute_error: 0.0192 Epoch 61: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 98ms/step - loss: 5.9955e-04 - mean_squared_error: 5.9955e-04 - mean_absolute_error: 0.0192 - val_loss: 3.8044e-04 - val_mean_squared_error: 3.8044e-04 - val_mean_absolute_error: 0.0151 Epoch 62/100 20/20 [==============================] - ETA: 0s - loss: 7.0279e-04 - mean_squared_error: 7.0279e-04 - mean_absolute_error: 0.0208 Epoch 62: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 94ms/step - loss: 7.0279e-04 - mean_squared_error: 7.0279e-04 - mean_absolute_error: 0.0208 - val_loss: 4.6008e-04 - val_mean_squared_error: 4.6008e-04 - val_mean_absolute_error: 0.0168 Epoch 63/100 20/20 [==============================] - ETA: 0s - loss: 7.0885e-04 - mean_squared_error: 7.0885e-04 - mean_absolute_error: 0.0208 Epoch 63: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 80ms/step - loss: 7.0885e-04 - mean_squared_error: 7.0885e-04 - mean_absolute_error: 0.0208 - val_loss: 3.4644e-04 - val_mean_squared_error: 3.4644e-04 - val_mean_absolute_error: 0.0145 Epoch 64/100 20/20 [==============================] - ETA: 0s - loss: 6.7932e-04 - mean_squared_error: 6.7932e-04 - mean_absolute_error: 0.0203 Epoch 64: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 86ms/step - loss: 6.7932e-04 - mean_squared_error: 6.7932e-04 - mean_absolute_error: 0.0203 - val_loss: 4.6898e-04 - val_mean_squared_error: 4.6898e-04 - val_mean_absolute_error: 0.0169 Epoch 65/100 20/20 [==============================] - ETA: 0s - loss: 7.0820e-04 - mean_squared_error: 7.0820e-04 - mean_absolute_error: 0.0209 Epoch 65: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 90ms/step - loss: 7.0820e-04 - mean_squared_error: 7.0820e-04 - mean_absolute_error: 0.0209 - val_loss: 3.6453e-04 - val_mean_squared_error: 3.6453e-04 - val_mean_absolute_error: 0.0152 Epoch 66/100 20/20 [==============================] - ETA: 0s - loss: 6.5818e-04 - mean_squared_error: 6.5818e-04 - mean_absolute_error: 0.0201 Epoch 66: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 87ms/step - loss: 6.5818e-04 - mean_squared_error: 6.5818e-04 - mean_absolute_error: 0.0201 - val_loss: 5.2080e-04 - val_mean_squared_error: 5.2080e-04 - val_mean_absolute_error: 0.0179 Epoch 67/100 20/20 [==============================] - ETA: 0s - loss: 6.6898e-04 - mean_squared_error: 6.6898e-04 - mean_absolute_error: 0.0204 Epoch 67: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 95ms/step - loss: 6.6898e-04 - mean_squared_error: 6.6898e-04 - mean_absolute_error: 0.0204 - val_loss: 3.4278e-04 - val_mean_squared_error: 3.4278e-04 - val_mean_absolute_error: 0.0144 Epoch 68/100 20/20 [==============================] - ETA: 0s - loss: 6.8587e-04 - mean_squared_error: 6.8587e-04 - mean_absolute_error: 0.0206 Epoch 68: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 80ms/step - loss: 6.8587e-04 - mean_squared_error: 6.8587e-04 - mean_absolute_error: 0.0206 - val_loss: 3.5984e-04 - val_mean_squared_error: 3.5984e-04 - val_mean_absolute_error: 0.0147 Epoch 69/100 20/20 [==============================] - ETA: 0s - loss: 7.0415e-04 - mean_squared_error: 7.0415e-04 - mean_absolute_error: 0.0208 Epoch 69: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 71ms/step - loss: 7.0415e-04 - mean_squared_error: 7.0415e-04 - mean_absolute_error: 0.0208 - val_loss: 9.6276e-04 - val_mean_squared_error: 9.6276e-04 - val_mean_absolute_error: 0.0249 Epoch 70/100 20/20 [==============================] - ETA: 0s - loss: 8.2897e-04 - mean_squared_error: 8.2897e-04 - mean_absolute_error: 0.0225 Epoch 70: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 71ms/step - loss: 8.2897e-04 - mean_squared_error: 8.2897e-04 - mean_absolute_error: 0.0225 - val_loss: 3.6321e-04 - val_mean_squared_error: 3.6321e-04 - val_mean_absolute_error: 0.0151 Epoch 71/100 20/20 [==============================] - ETA: 0s - loss: 7.0449e-04 - mean_squared_error: 7.0449e-04 - mean_absolute_error: 0.0207 Epoch 71: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 72ms/step - loss: 7.0449e-04 - mean_squared_error: 7.0449e-04 - mean_absolute_error: 0.0207 - val_loss: 3.5138e-04 - val_mean_squared_error: 3.5138e-04 - val_mean_absolute_error: 0.0146 Epoch 72/100 20/20 [==============================] - ETA: 0s - loss: 6.7242e-04 - mean_squared_error: 6.7242e-04 - mean_absolute_error: 0.0204 Epoch 72: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 72ms/step - loss: 6.7242e-04 - mean_squared_error: 6.7242e-04 - mean_absolute_error: 0.0204 - val_loss: 3.7271e-04 - val_mean_squared_error: 3.7271e-04 - val_mean_absolute_error: 0.0151 Epoch 73/100 20/20 [==============================] - ETA: 0s - loss: 6.9029e-04 - mean_squared_error: 6.9029e-04 - mean_absolute_error: 0.0205 Epoch 73: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 74ms/step - loss: 6.9029e-04 - mean_squared_error: 6.9029e-04 - mean_absolute_error: 0.0205 - val_loss: 3.9402e-04 - val_mean_squared_error: 3.9402e-04 - val_mean_absolute_error: 0.0154 Epoch 74/100 20/20 [==============================] - ETA: 0s - loss: 6.4554e-04 - mean_squared_error: 6.4554e-04 - mean_absolute_error: 0.0199 Epoch 74: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 69ms/step - loss: 6.4554e-04 - mean_squared_error: 6.4554e-04 - mean_absolute_error: 0.0199 - val_loss: 3.8140e-04 - val_mean_squared_error: 3.8140e-04 - val_mean_absolute_error: 0.0151 Epoch 75/100 20/20 [==============================] - ETA: 0s - loss: 7.0126e-04 - mean_squared_error: 7.0126e-04 - mean_absolute_error: 0.0206 Epoch 75: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 74ms/step - loss: 7.0126e-04 - mean_squared_error: 7.0126e-04 - mean_absolute_error: 0.0206 - val_loss: 4.8754e-04 - val_mean_squared_error: 4.8754e-04 - val_mean_absolute_error: 0.0171 Epoch 76/100 20/20 [==============================] - ETA: 0s - loss: 5.8333e-04 - mean_squared_error: 5.8333e-04 - mean_absolute_error: 0.0189 Epoch 76: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 5.8333e-04 - mean_squared_error: 5.8333e-04 - mean_absolute_error: 0.0189 - val_loss: 3.4998e-04 - val_mean_squared_error: 3.4998e-04 - val_mean_absolute_error: 0.0146 Epoch 77/100 20/20 [==============================] - ETA: 0s - loss: 6.8672e-04 - mean_squared_error: 6.8672e-04 - mean_absolute_error: 0.0206 Epoch 77: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 84ms/step - loss: 6.8672e-04 - mean_squared_error: 6.8672e-04 - mean_absolute_error: 0.0206 - val_loss: 4.0310e-04 - val_mean_squared_error: 4.0310e-04 - val_mean_absolute_error: 0.0157 Epoch 78/100 20/20 [==============================] - ETA: 0s - loss: 6.5359e-04 - mean_squared_error: 6.5359e-04 - mean_absolute_error: 0.0201 Epoch 78: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 98ms/step - loss: 6.5359e-04 - mean_squared_error: 6.5359e-04 - mean_absolute_error: 0.0201 - val_loss: 5.4830e-04 - val_mean_squared_error: 5.4830e-04 - val_mean_absolute_error: 0.0183 Epoch 79/100 20/20 [==============================] - ETA: 0s - loss: 7.0746e-04 - mean_squared_error: 7.0746e-04 - mean_absolute_error: 0.0207 Epoch 79: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 89ms/step - loss: 7.0746e-04 - mean_squared_error: 7.0746e-04 - mean_absolute_error: 0.0207 - val_loss: 5.1688e-04 - val_mean_squared_error: 5.1688e-04 - val_mean_absolute_error: 0.0178 Epoch 80/100 20/20 [==============================] - ETA: 0s - loss: 6.9351e-04 - mean_squared_error: 6.9351e-04 - mean_absolute_error: 0.0206 Epoch 80: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 89ms/step - loss: 6.9351e-04 - mean_squared_error: 6.9351e-04 - mean_absolute_error: 0.0206 - val_loss: 3.3175e-04 - val_mean_squared_error: 3.3175e-04 - val_mean_absolute_error: 0.0143 Epoch 81/100 20/20 [==============================] - ETA: 0s - loss: 6.7371e-04 - mean_squared_error: 6.7371e-04 - mean_absolute_error: 0.0203 Epoch 81: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 87ms/step - loss: 6.7371e-04 - mean_squared_error: 6.7371e-04 - mean_absolute_error: 0.0203 - val_loss: 3.7802e-04 - val_mean_squared_error: 3.7802e-04 - val_mean_absolute_error: 0.0154 Epoch 82/100 20/20 [==============================] - ETA: 0s - loss: 6.7300e-04 - mean_squared_error: 6.7300e-04 - mean_absolute_error: 0.0204 Epoch 82: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 96ms/step - loss: 6.7300e-04 - mean_squared_error: 6.7300e-04 - mean_absolute_error: 0.0204 - val_loss: 3.8392e-04 - val_mean_squared_error: 3.8392e-04 - val_mean_absolute_error: 0.0154 Epoch 83/100 20/20 [==============================] - ETA: 0s - loss: 6.6223e-04 - mean_squared_error: 6.6223e-04 - mean_absolute_error: 0.0201 Epoch 83: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 95ms/step - loss: 6.6223e-04 - mean_squared_error: 6.6223e-04 - mean_absolute_error: 0.0201 - val_loss: 4.5531e-04 - val_mean_squared_error: 4.5531e-04 - val_mean_absolute_error: 0.0164 Epoch 84/100 20/20 [==============================] - ETA: 0s - loss: 7.5437e-04 - mean_squared_error: 7.5437e-04 - mean_absolute_error: 0.0214 Epoch 84: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 7.5437e-04 - mean_squared_error: 7.5437e-04 - mean_absolute_error: 0.0214 - val_loss: 4.4061e-04 - val_mean_squared_error: 4.4061e-04 - val_mean_absolute_error: 0.0166 Epoch 85/100 20/20 [==============================] - ETA: 0s - loss: 7.1981e-04 - mean_squared_error: 7.1981e-04 - mean_absolute_error: 0.0210 Epoch 85: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 77ms/step - loss: 7.1981e-04 - mean_squared_error: 7.1981e-04 - mean_absolute_error: 0.0210 - val_loss: 5.0967e-04 - val_mean_squared_error: 5.0967e-04 - val_mean_absolute_error: 0.0175 Epoch 86/100 20/20 [==============================] - ETA: 0s - loss: 6.8076e-04 - mean_squared_error: 6.8076e-04 - mean_absolute_error: 0.0204 Epoch 86: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 76ms/step - loss: 6.8076e-04 - mean_squared_error: 6.8076e-04 - mean_absolute_error: 0.0204 - val_loss: 3.5796e-04 - val_mean_squared_error: 3.5796e-04 - val_mean_absolute_error: 0.0148 Epoch 87/100 20/20 [==============================] - ETA: 0s - loss: 6.7965e-04 - mean_squared_error: 6.7965e-04 - mean_absolute_error: 0.0204 Epoch 87: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 78ms/step - loss: 6.7965e-04 - mean_squared_error: 6.7965e-04 - mean_absolute_error: 0.0204 - val_loss: 5.6919e-04 - val_mean_squared_error: 5.6919e-04 - val_mean_absolute_error: 0.0187 Epoch 88/100 20/20 [==============================] - ETA: 0s - loss: 6.1704e-04 - mean_squared_error: 6.1704e-04 - mean_absolute_error: 0.0196 Epoch 88: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 86ms/step - loss: 6.1704e-04 - mean_squared_error: 6.1704e-04 - mean_absolute_error: 0.0196 - val_loss: 3.4349e-04 - val_mean_squared_error: 3.4349e-04 - val_mean_absolute_error: 0.0144 Epoch 89/100 20/20 [==============================] - ETA: 0s - loss: 6.9993e-04 - mean_squared_error: 6.9993e-04 - mean_absolute_error: 0.0208 Epoch 89: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 83ms/step - loss: 6.9993e-04 - mean_squared_error: 6.9993e-04 - mean_absolute_error: 0.0208 - val_loss: 4.4026e-04 - val_mean_squared_error: 4.4026e-04 - val_mean_absolute_error: 0.0162 Epoch 90/100 20/20 [==============================] - ETA: 0s - loss: 6.9252e-04 - mean_squared_error: 6.9252e-04 - mean_absolute_error: 0.0207 Epoch 90: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 92ms/step - loss: 6.9252e-04 - mean_squared_error: 6.9252e-04 - mean_absolute_error: 0.0207 - val_loss: 3.3542e-04 - val_mean_squared_error: 3.3542e-04 - val_mean_absolute_error: 0.0144 Epoch 91/100 20/20 [==============================] - ETA: 0s - loss: 6.8968e-04 - mean_squared_error: 6.8968e-04 - mean_absolute_error: 0.0206 Epoch 91: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 88ms/step - loss: 6.8968e-04 - mean_squared_error: 6.8968e-04 - mean_absolute_error: 0.0206 - val_loss: 3.3778e-04 - val_mean_squared_error: 3.3778e-04 - val_mean_absolute_error: 0.0143 Epoch 92/100 20/20 [==============================] - ETA: 0s - loss: 6.8022e-04 - mean_squared_error: 6.8022e-04 - mean_absolute_error: 0.0204 Epoch 92: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 87ms/step - loss: 6.8022e-04 - mean_squared_error: 6.8022e-04 - mean_absolute_error: 0.0204 - val_loss: 3.5146e-04 - val_mean_squared_error: 3.5146e-04 - val_mean_absolute_error: 0.0146 Epoch 93/100 20/20 [==============================] - ETA: 0s - loss: 7.5327e-04 - mean_squared_error: 7.5327e-04 - mean_absolute_error: 0.0214 Epoch 93: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 82ms/step - loss: 7.5327e-04 - mean_squared_error: 7.5327e-04 - mean_absolute_error: 0.0214 - val_loss: 4.6937e-04 - val_mean_squared_error: 4.6937e-04 - val_mean_absolute_error: 0.0168 Epoch 94/100 20/20 [==============================] - ETA: 0s - loss: 7.2225e-04 - mean_squared_error: 7.2225e-04 - mean_absolute_error: 0.0211 Epoch 94: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 92ms/step - loss: 7.2225e-04 - mean_squared_error: 7.2225e-04 - mean_absolute_error: 0.0211 - val_loss: 3.9726e-04 - val_mean_squared_error: 3.9726e-04 - val_mean_absolute_error: 0.0154 Epoch 95/100 20/20 [==============================] - ETA: 0s - loss: 6.5949e-04 - mean_squared_error: 6.5949e-04 - mean_absolute_error: 0.0201 Epoch 95: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 85ms/step - loss: 6.5949e-04 - mean_squared_error: 6.5949e-04 - mean_absolute_error: 0.0201 - val_loss: 3.6718e-04 - val_mean_squared_error: 3.6718e-04 - val_mean_absolute_error: 0.0152 Epoch 96/100 20/20 [==============================] - ETA: 0s - loss: 7.4063e-04 - mean_squared_error: 7.4063e-04 - mean_absolute_error: 0.0213 Epoch 96: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 80ms/step - loss: 7.4063e-04 - mean_squared_error: 7.4063e-04 - mean_absolute_error: 0.0213 - val_loss: 5.5497e-04 - val_mean_squared_error: 5.5497e-04 - val_mean_absolute_error: 0.0184 Epoch 97/100 20/20 [==============================] - ETA: 0s - loss: 6.9072e-04 - mean_squared_error: 6.9072e-04 - mean_absolute_error: 0.0205 Epoch 97: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 83ms/step - loss: 6.9072e-04 - mean_squared_error: 6.9072e-04 - mean_absolute_error: 0.0205 - val_loss: 3.9436e-04 - val_mean_squared_error: 3.9436e-04 - val_mean_absolute_error: 0.0157 Epoch 98/100 20/20 [==============================] - ETA: 0s - loss: 8.4270e-04 - mean_squared_error: 8.4270e-04 - mean_absolute_error: 0.0228 Epoch 98: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 86ms/step - loss: 8.4270e-04 - mean_squared_error: 8.4270e-04 - mean_absolute_error: 0.0228 - val_loss: 8.1613e-04 - val_mean_squared_error: 8.1613e-04 - val_mean_absolute_error: 0.0226 Epoch 99/100 20/20 [==============================] - ETA: 0s - loss: 7.4801e-04 - mean_squared_error: 7.4801e-04 - mean_absolute_error: 0.0215 Epoch 99: val_loss did not improve from 0.00033 20/20 [==============================] - 1s 74ms/step - loss: 7.4801e-04 - mean_squared_error: 7.4801e-04 - mean_absolute_error: 0.0215 - val_loss: 4.0578e-04 - val_mean_squared_error: 4.0578e-04 - val_mean_absolute_error: 0.0160 Epoch 100/100 20/20 [==============================] - ETA: 0s - loss: 6.6425e-04 - mean_squared_error: 6.6425e-04 - mean_absolute_error: 0.0203 Epoch 100: val_loss did not improve from 0.00033 20/20 [==============================] - 2s 77ms/step - loss: 6.6425e-04 - mean_squared_error: 6.6425e-04 - mean_absolute_error: 0.0203 - val_loss: 4.4086e-04 - val_mean_squared_error: 4.4086e-04 - val_mean_absolute_error: 0.0161
model_evaluate_and_plot(model_sm3b,history_sm3e,X_test3e,y_test3e)
7/7 [==============================] - 0s 36ms/step - loss: 4.3500e-04 - mean_squared_error: 4.3500e-04 - mean_absolute_error: 0.0159 Loss: 0.00043499638559296727 Mean Square Error: 0.00043499638559296727 Mean Absolute Error: 0.01592227816581726 7/7 [==============================] - 0s 32ms/step Test R2 score: 0.9952594050725498
xvar=np.random.randint(0,np.shape(X_test3a)[0],1)[0]
regenerate_test_cfs_vector_and_compare(calc_diffuse_cfs4_big,X_test3a,y_test3a,xvar,cfs=4)
[ 1. -0.108231 -0.26752 -0.145992 -0.072207 0.275015 -0.404672 -0.214134 -0.092172 -0.192433 -0.019256 -0.420731 -0.031842 -0.621252 -0.08002 0.502012] [[ 1. -0.108231 -0.26752 -0.145992] [-0.072207 0.275015 -0.404672 -0.214134] [-0.092172 -0.192433 -0.019256 -0.420731] [-0.031842 -0.621252 -0.08002 0.502012]]
y_pred3a = model_sm3b.predict(X_test3a)
7/7 [==============================] - 0s 37ms/step
regenerate_pred_cfs_vector_and_compare(calc_diffuse_cfs4_big,X_test3a,y_test3a,y_pred3a,xvar,cfs=4)
# Evaluate the model on the train set
y_pred = model_sm.predict(X_train2)
r2 = r2_score(y_train2.flatten(), y_pred.flatten())
print("Test R2 score:", r2)
125/125 [==============================] - 1s 7ms/step Test R2 score: 0.8311022570285096
m,b=np.polyfit(y_train2.flatten(),y_pred.flatten(),1)
xs=np.linspace(-1,1,10)
ys=m*xs+b
ax=sns.scatterplot(x=y_train2.flatten(),y=y_pred.flatten(),marker='o',edgecolor='r',c='none',s=10,alpha=0.7,label='R2:%.2f'%r2)
ax=plt.plot(xs,ys,c='k',marker='none',linestyle='--',alpha=0.6,label='line fit')
ax=plt.legend()
ax=plt.xlim([-1.0,1.0])
ax=plt.ylim([-1.0,1.0])
ax=plt.margins(0.25)
ax=plt.xlabel('Actual Values')
ax=plt.ylabel('Predicted Values')
ax=plt.title('Predicted vs Actual Values')
batch_size = 32
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_big_best_model_5000_p1.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
model.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
history =model.fit(X_train,y_train,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
# ## Evaluate the trained model
# In[ ]:
Epoch 1/100 100/100 [==============================] - ETA: 0s - loss: 1.6438 - mean_squared_error: 1.6438 - mean_absolute_error: 0.9196 Epoch 1: val_loss improved from inf to 0.16907, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 84ms/step - loss: 1.6438 - mean_squared_error: 1.6438 - mean_absolute_error: 0.9196 - val_loss: 0.1691 - val_mean_squared_error: 0.1691 - val_mean_absolute_error: 0.3066 Epoch 2/100 100/100 [==============================] - ETA: 0s - loss: 0.8204 - mean_squared_error: 0.8204 - mean_absolute_error: 0.6482 Epoch 2: val_loss improved from 0.16907 to 0.04795, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 6s 55ms/step - loss: 0.8204 - mean_squared_error: 0.8204 - mean_absolute_error: 0.6482 - val_loss: 0.0480 - val_mean_squared_error: 0.0480 - val_mean_absolute_error: 0.1735 Epoch 3/100 100/100 [==============================] - ETA: 0s - loss: 0.4962 - mean_squared_error: 0.4962 - mean_absolute_error: 0.5071 Epoch 3: val_loss improved from 0.04795 to 0.03140, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 6s 64ms/step - loss: 0.4962 - mean_squared_error: 0.4962 - mean_absolute_error: 0.5071 - val_loss: 0.0314 - val_mean_squared_error: 0.0314 - val_mean_absolute_error: 0.1415 Epoch 4/100 100/100 [==============================] - ETA: 0s - loss: 0.3324 - mean_squared_error: 0.3324 - mean_absolute_error: 0.4128 Epoch 4: val_loss improved from 0.03140 to 0.02286, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 8s 79ms/step - loss: 0.3324 - mean_squared_error: 0.3324 - mean_absolute_error: 0.4128 - val_loss: 0.0229 - val_mean_squared_error: 0.0229 - val_mean_absolute_error: 0.1209 Epoch 5/100 100/100 [==============================] - ETA: 0s - loss: 0.2108 - mean_squared_error: 0.2108 - mean_absolute_error: 0.3336 Epoch 5: val_loss improved from 0.02286 to 0.01746, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 100ms/step - loss: 0.2108 - mean_squared_error: 0.2108 - mean_absolute_error: 0.3336 - val_loss: 0.0175 - val_mean_squared_error: 0.0175 - val_mean_absolute_error: 0.1059 Epoch 6/100 100/100 [==============================] - ETA: 0s - loss: 0.1388 - mean_squared_error: 0.1388 - mean_absolute_error: 0.2720 Epoch 6: val_loss improved from 0.01746 to 0.01536, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 104ms/step - loss: 0.1388 - mean_squared_error: 0.1388 - mean_absolute_error: 0.2720 - val_loss: 0.0154 - val_mean_squared_error: 0.0154 - val_mean_absolute_error: 0.1000 Epoch 7/100 99/100 [============================>.] - ETA: 0s - loss: 0.0933 - mean_squared_error: 0.0933 - mean_absolute_error: 0.2269 Epoch 7: val_loss improved from 0.01536 to 0.01365, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 9s 88ms/step - loss: 0.0931 - mean_squared_error: 0.0931 - mean_absolute_error: 0.2266 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0942 Epoch 8/100 100/100 [==============================] - ETA: 0s - loss: 0.0652 - mean_squared_error: 0.0652 - mean_absolute_error: 0.1930 Epoch 8: val_loss improved from 0.01365 to 0.01235, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 11s 107ms/step - loss: 0.0652 - mean_squared_error: 0.0652 - mean_absolute_error: 0.1930 - val_loss: 0.0123 - val_mean_squared_error: 0.0123 - val_mean_absolute_error: 0.0901 Epoch 9/100 100/100 [==============================] - ETA: 0s - loss: 0.0482 - mean_squared_error: 0.0482 - mean_absolute_error: 0.1680 Epoch 9: val_loss improved from 0.01235 to 0.01175, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 14s 137ms/step - loss: 0.0482 - mean_squared_error: 0.0482 - mean_absolute_error: 0.1680 - val_loss: 0.0118 - val_mean_squared_error: 0.0118 - val_mean_absolute_error: 0.0885 Epoch 10/100 100/100 [==============================] - ETA: 0s - loss: 0.0380 - mean_squared_error: 0.0380 - mean_absolute_error: 0.1510 Epoch 10: val_loss did not improve from 0.01175 100/100 [==============================] - 7s 71ms/step - loss: 0.0380 - mean_squared_error: 0.0380 - mean_absolute_error: 0.1510 - val_loss: 0.0120 - val_mean_squared_error: 0.0120 - val_mean_absolute_error: 0.0871 Epoch 11/100 100/100 [==============================] - ETA: 0s - loss: 0.0308 - mean_squared_error: 0.0308 - mean_absolute_error: 0.1374 Epoch 11: val_loss did not improve from 0.01175 100/100 [==============================] - 11s 106ms/step - loss: 0.0308 - mean_squared_error: 0.0308 - mean_absolute_error: 0.1374 - val_loss: 0.0118 - val_mean_squared_error: 0.0118 - val_mean_absolute_error: 0.0848 Epoch 12/100 100/100 [==============================] - ETA: 0s - loss: 0.0273 - mean_squared_error: 0.0273 - mean_absolute_error: 0.1300 Epoch 12: val_loss improved from 0.01175 to 0.01007, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 11s 113ms/step - loss: 0.0273 - mean_squared_error: 0.0273 - mean_absolute_error: 0.1300 - val_loss: 0.0101 - val_mean_squared_error: 0.0101 - val_mean_absolute_error: 0.0814 Epoch 13/100 100/100 [==============================] - ETA: 0s - loss: 0.0244 - mean_squared_error: 0.0244 - mean_absolute_error: 0.1234 Epoch 13: val_loss improved from 0.01007 to 0.00906, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 96ms/step - loss: 0.0244 - mean_squared_error: 0.0244 - mean_absolute_error: 0.1234 - val_loss: 0.0091 - val_mean_squared_error: 0.0091 - val_mean_absolute_error: 0.0780 Epoch 14/100 100/100 [==============================] - ETA: 0s - loss: 0.0229 - mean_squared_error: 0.0229 - mean_absolute_error: 0.1198 Epoch 14: val_loss improved from 0.00906 to 0.00823, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 11s 108ms/step - loss: 0.0229 - mean_squared_error: 0.0229 - mean_absolute_error: 0.1198 - val_loss: 0.0082 - val_mean_squared_error: 0.0082 - val_mean_absolute_error: 0.0743 Epoch 15/100 100/100 [==============================] - ETA: 0s - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.1172 Epoch 15: val_loss improved from 0.00823 to 0.00781, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 11s 107ms/step - loss: 0.0218 - mean_squared_error: 0.0218 - mean_absolute_error: 0.1172 - val_loss: 0.0078 - val_mean_squared_error: 0.0078 - val_mean_absolute_error: 0.0725 Epoch 16/100 100/100 [==============================] - ETA: 0s - loss: 0.0211 - mean_squared_error: 0.0211 - mean_absolute_error: 0.1150 Epoch 16: val_loss improved from 0.00781 to 0.00743, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 121ms/step - loss: 0.0211 - mean_squared_error: 0.0211 - mean_absolute_error: 0.1150 - val_loss: 0.0074 - val_mean_squared_error: 0.0074 - val_mean_absolute_error: 0.0708 Epoch 17/100 100/100 [==============================] - ETA: 0s - loss: 0.0202 - mean_squared_error: 0.0202 - mean_absolute_error: 0.1124 Epoch 17: val_loss improved from 0.00743 to 0.00670, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 9s 94ms/step - loss: 0.0202 - mean_squared_error: 0.0202 - mean_absolute_error: 0.1124 - val_loss: 0.0067 - val_mean_squared_error: 0.0067 - val_mean_absolute_error: 0.0671 Epoch 18/100 100/100 [==============================] - ETA: 0s - loss: 0.0198 - mean_squared_error: 0.0198 - mean_absolute_error: 0.1115 Epoch 18: val_loss improved from 0.00670 to 0.00629, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 120ms/step - loss: 0.0198 - mean_squared_error: 0.0198 - mean_absolute_error: 0.1115 - val_loss: 0.0063 - val_mean_squared_error: 0.0063 - val_mean_absolute_error: 0.0649 Epoch 19/100 100/100 [==============================] - ETA: 0s - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.1102 Epoch 19: val_loss improved from 0.00629 to 0.00606, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 104ms/step - loss: 0.0193 - mean_squared_error: 0.0193 - mean_absolute_error: 0.1102 - val_loss: 0.0061 - val_mean_squared_error: 0.0061 - val_mean_absolute_error: 0.0636 Epoch 20/100 100/100 [==============================] - ETA: 0s - loss: 0.0194 - mean_squared_error: 0.0194 - mean_absolute_error: 0.1103 Epoch 20: val_loss improved from 0.00606 to 0.00576, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 9s 91ms/step - loss: 0.0194 - mean_squared_error: 0.0194 - mean_absolute_error: 0.1103 - val_loss: 0.0058 - val_mean_squared_error: 0.0058 - val_mean_absolute_error: 0.0620 Epoch 21/100 100/100 [==============================] - ETA: 0s - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.1099 Epoch 21: val_loss improved from 0.00576 to 0.00533, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 117ms/step - loss: 0.0191 - mean_squared_error: 0.0191 - mean_absolute_error: 0.1099 - val_loss: 0.0053 - val_mean_squared_error: 0.0053 - val_mean_absolute_error: 0.0592 Epoch 22/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1090 Epoch 22: val_loss did not improve from 0.00533 100/100 [==============================] - 12s 117ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1090 - val_loss: 0.0054 - val_mean_squared_error: 0.0054 - val_mean_absolute_error: 0.0596 Epoch 23/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1088 Epoch 23: val_loss improved from 0.00533 to 0.00488, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 13s 133ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1088 - val_loss: 0.0049 - val_mean_squared_error: 0.0049 - val_mean_absolute_error: 0.0566 Epoch 24/100 100/100 [==============================] - ETA: 0s - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.1091 Epoch 24: val_loss did not improve from 0.00488 100/100 [==============================] - 12s 124ms/step - loss: 0.0190 - mean_squared_error: 0.0190 - mean_absolute_error: 0.1091 - val_loss: 0.0053 - val_mean_squared_error: 0.0053 - val_mean_absolute_error: 0.0587 Epoch 25/100 100/100 [==============================] - ETA: 0s - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1088 Epoch 25: val_loss improved from 0.00488 to 0.00481, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 13s 129ms/step - loss: 0.0188 - mean_squared_error: 0.0188 - mean_absolute_error: 0.1088 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0559 Epoch 26/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1083 Epoch 26: val_loss improved from 0.00481 to 0.00475, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 13s 129ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1083 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0554 Epoch 27/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1083 Epoch 27: val_loss improved from 0.00475 to 0.00473, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 120ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1083 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0554 Epoch 28/100 99/100 [============================>.] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1074 Epoch 28: val_loss improved from 0.00473 to 0.00453, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 10s 101ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1075 - val_loss: 0.0045 - val_mean_squared_error: 0.0045 - val_mean_absolute_error: 0.0540 Epoch 29/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 Epoch 29: val_loss improved from 0.00453 to 0.00441, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 8s 78ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 - val_loss: 0.0044 - val_mean_squared_error: 0.0044 - val_mean_absolute_error: 0.0534 Epoch 30/100 100/100 [==============================] - ETA: 0s - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1084 Epoch 30: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 101ms/step - loss: 0.0187 - mean_squared_error: 0.0187 - mean_absolute_error: 0.1084 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0551 Epoch 31/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1076 Epoch 31: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 104ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1076 - val_loss: 0.0045 - val_mean_squared_error: 0.0045 - val_mean_absolute_error: 0.0538 Epoch 32/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 Epoch 32: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 108ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 - val_loss: 0.0046 - val_mean_squared_error: 0.0046 - val_mean_absolute_error: 0.0543 Epoch 33/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1080 Epoch 33: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 113ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1080 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0561 Epoch 34/100 100/100 [==============================] - ETA: 0s - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1076 Epoch 34: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 124ms/step - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1076 - val_loss: 0.0074 - val_mean_squared_error: 0.0074 - val_mean_absolute_error: 0.0568 Epoch 35/100 100/100 [==============================] - ETA: 0s - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1076 Epoch 35: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 111ms/step - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1076 - val_loss: 0.0083 - val_mean_squared_error: 0.0083 - val_mean_absolute_error: 0.0556 Epoch 36/100 100/100 [==============================] - ETA: 0s - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1079 Epoch 36: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 115ms/step - loss: 0.0185 - mean_squared_error: 0.0185 - mean_absolute_error: 0.1079 - val_loss: 0.0138 - val_mean_squared_error: 0.0138 - val_mean_absolute_error: 0.0560 Epoch 37/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1080 Epoch 37: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 116ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1080 - val_loss: 0.0172 - val_mean_squared_error: 0.0172 - val_mean_absolute_error: 0.0577 Epoch 38/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 Epoch 38: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 121ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 - val_loss: 0.0373 - val_mean_squared_error: 0.0373 - val_mean_absolute_error: 0.0591 Epoch 39/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 Epoch 39: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 119ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 - val_loss: 0.0293 - val_mean_squared_error: 0.0293 - val_mean_absolute_error: 0.0590 Epoch 40/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1081 Epoch 40: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 109ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1081 - val_loss: 0.0346 - val_mean_squared_error: 0.0346 - val_mean_absolute_error: 0.0593 Epoch 41/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1072 Epoch 41: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 110ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1072 - val_loss: 0.0466 - val_mean_squared_error: 0.0466 - val_mean_absolute_error: 0.0604 Epoch 42/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1065 Epoch 42: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 115ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1065 - val_loss: 0.0916 - val_mean_squared_error: 0.0916 - val_mean_absolute_error: 0.0596 Epoch 43/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1069 Epoch 43: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 119ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1069 - val_loss: 0.0788 - val_mean_squared_error: 0.0788 - val_mean_absolute_error: 0.0632 Epoch 44/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 Epoch 44: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 113ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 - val_loss: 0.0742 - val_mean_squared_error: 0.0742 - val_mean_absolute_error: 0.0619 Epoch 45/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1082 Epoch 45: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 101ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1082 - val_loss: 0.0921 - val_mean_squared_error: 0.0921 - val_mean_absolute_error: 0.0600 Epoch 46/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 Epoch 46: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 101ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1077 - val_loss: 0.1360 - val_mean_squared_error: 0.1360 - val_mean_absolute_error: 0.0667 Epoch 47/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 Epoch 47: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 117ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 - val_loss: 0.1933 - val_mean_squared_error: 0.1933 - val_mean_absolute_error: 0.0639 Epoch 48/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1069 Epoch 48: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 110ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1069 - val_loss: 0.1419 - val_mean_squared_error: 0.1419 - val_mean_absolute_error: 0.0660 Epoch 49/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1066 Epoch 49: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 99ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1066 - val_loss: 0.1394 - val_mean_squared_error: 0.1394 - val_mean_absolute_error: 0.0651 Epoch 50/100 100/100 [==============================] - ETA: 0s - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1081 Epoch 50: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 101ms/step - loss: 0.0186 - mean_squared_error: 0.0186 - mean_absolute_error: 0.1081 - val_loss: 0.1511 - val_mean_squared_error: 0.1511 - val_mean_absolute_error: 0.0648 Epoch 51/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 Epoch 51: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 112ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 - val_loss: 0.1488 - val_mean_squared_error: 0.1488 - val_mean_absolute_error: 0.0643 Epoch 52/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 Epoch 52: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 114ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1074 - val_loss: 0.1395 - val_mean_squared_error: 0.1395 - val_mean_absolute_error: 0.0645 Epoch 53/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1074 Epoch 53: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 112ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1074 - val_loss: 0.2178 - val_mean_squared_error: 0.2178 - val_mean_absolute_error: 0.0669 Epoch 54/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1069 Epoch 54: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 114ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1069 - val_loss: 0.1714 - val_mean_squared_error: 0.1714 - val_mean_absolute_error: 0.0646 Epoch 55/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1067 Epoch 55: val_loss did not improve from 0.00441 100/100 [==============================] - 8s 76ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1067 - val_loss: 0.1519 - val_mean_squared_error: 0.1519 - val_mean_absolute_error: 0.0661 Epoch 56/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1072 Epoch 56: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 105ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1072 - val_loss: 0.1200 - val_mean_squared_error: 0.1200 - val_mean_absolute_error: 0.0645 Epoch 57/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1074 Epoch 57: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 120ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1074 - val_loss: 0.1718 - val_mean_squared_error: 0.1718 - val_mean_absolute_error: 0.0655 Epoch 58/100 100/100 [==============================] - ETA: 0s - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 Epoch 58: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 115ms/step - loss: 0.0183 - mean_squared_error: 0.0183 - mean_absolute_error: 0.1075 - val_loss: 0.1347 - val_mean_squared_error: 0.1347 - val_mean_absolute_error: 0.0648 Epoch 59/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1068 Epoch 59: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 122ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1068 - val_loss: 0.1615 - val_mean_squared_error: 0.1615 - val_mean_absolute_error: 0.0644 Epoch 60/100 100/100 [==============================] - ETA: 0s - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1075 Epoch 60: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 117ms/step - loss: 0.0184 - mean_squared_error: 0.0184 - mean_absolute_error: 0.1075 - val_loss: 0.1498 - val_mean_squared_error: 0.1498 - val_mean_absolute_error: 0.0618 Epoch 61/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1064 Epoch 61: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 117ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1064 - val_loss: 0.1661 - val_mean_squared_error: 0.1661 - val_mean_absolute_error: 0.0620 Epoch 62/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1066 Epoch 62: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 108ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1066 - val_loss: 0.0986 - val_mean_squared_error: 0.0986 - val_mean_absolute_error: 0.0604 Epoch 63/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 Epoch 63: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 108ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 - val_loss: 0.1201 - val_mean_squared_error: 0.1201 - val_mean_absolute_error: 0.0622 Epoch 64/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1070 Epoch 64: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 101ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1070 - val_loss: 0.0638 - val_mean_squared_error: 0.0638 - val_mean_absolute_error: 0.0596 Epoch 65/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 Epoch 65: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 99ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 - val_loss: 0.1301 - val_mean_squared_error: 0.1301 - val_mean_absolute_error: 0.0628 Epoch 66/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1066 Epoch 66: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 100ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1066 - val_loss: 0.0590 - val_mean_squared_error: 0.0590 - val_mean_absolute_error: 0.0620 Epoch 67/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1065 Epoch 67: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 122ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1065 - val_loss: 0.0480 - val_mean_squared_error: 0.0480 - val_mean_absolute_error: 0.0607 Epoch 68/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 Epoch 68: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 118ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 - val_loss: 0.1896 - val_mean_squared_error: 0.1896 - val_mean_absolute_error: 0.0622 Epoch 69/100 100/100 [==============================] - ETA: 0s - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 Epoch 69: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 112ms/step - loss: 0.0182 - mean_squared_error: 0.0182 - mean_absolute_error: 0.1071 - val_loss: 0.1580 - val_mean_squared_error: 0.1580 - val_mean_absolute_error: 0.0636 Epoch 70/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1070 Epoch 70: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 121ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1070 - val_loss: 0.0261 - val_mean_squared_error: 0.0261 - val_mean_absolute_error: 0.0606 Epoch 71/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1067 Epoch 71: val_loss did not improve from 0.00441 100/100 [==============================] - 11s 113ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1067 - val_loss: 0.1258 - val_mean_squared_error: 0.1258 - val_mean_absolute_error: 0.0614 Epoch 72/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1065 Epoch 72: val_loss did not improve from 0.00441 100/100 [==============================] - 13s 131ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1065 - val_loss: 0.0938 - val_mean_squared_error: 0.0938 - val_mean_absolute_error: 0.0623 Epoch 73/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1061 Epoch 73: val_loss did not improve from 0.00441 100/100 [==============================] - 13s 126ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1061 - val_loss: 0.0462 - val_mean_squared_error: 0.0462 - val_mean_absolute_error: 0.0553 Epoch 74/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1056 Epoch 74: val_loss did not improve from 0.00441 100/100 [==============================] - 13s 135ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1056 - val_loss: 0.0077 - val_mean_squared_error: 0.0077 - val_mean_absolute_error: 0.0548 Epoch 75/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1063 Epoch 75: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 123ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1063 - val_loss: 0.0077 - val_mean_squared_error: 0.0077 - val_mean_absolute_error: 0.0517 Epoch 76/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1065 Epoch 76: val_loss did not improve from 0.00441 100/100 [==============================] - 10s 98ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1065 - val_loss: 0.0057 - val_mean_squared_error: 0.0057 - val_mean_absolute_error: 0.0519 Epoch 77/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1060 Epoch 77: val_loss did not improve from 0.00441 100/100 [==============================] - 12s 124ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1060 - val_loss: 0.0044 - val_mean_squared_error: 0.0044 - val_mean_absolute_error: 0.0534 Epoch 78/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1053 Epoch 78: val_loss improved from 0.00441 to 0.00363, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 120ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1053 - val_loss: 0.0036 - val_mean_squared_error: 0.0036 - val_mean_absolute_error: 0.0477 Epoch 79/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1060 Epoch 79: val_loss did not improve from 0.00363 100/100 [==============================] - 12s 123ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1060 - val_loss: 0.0386 - val_mean_squared_error: 0.0386 - val_mean_absolute_error: 0.0566 Epoch 80/100 100/100 [==============================] - ETA: 0s - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1067 Epoch 80: val_loss did not improve from 0.00363 100/100 [==============================] - 10s 101ms/step - loss: 0.0181 - mean_squared_error: 0.0181 - mean_absolute_error: 0.1067 - val_loss: 0.0339 - val_mean_squared_error: 0.0339 - val_mean_absolute_error: 0.0532 Epoch 81/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 Epoch 81: val_loss did not improve from 0.00363 100/100 [==============================] - 10s 96ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1062 - val_loss: 0.0062 - val_mean_squared_error: 0.0062 - val_mean_absolute_error: 0.0537 Epoch 82/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1063 Epoch 82: val_loss did not improve from 0.00363 100/100 [==============================] - 10s 100ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1063 - val_loss: 0.0047 - val_mean_squared_error: 0.0047 - val_mean_absolute_error: 0.0550 Epoch 83/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1051 Epoch 83: val_loss did not improve from 0.00363 100/100 [==============================] - 12s 116ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1051 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0553 Epoch 84/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1050 Epoch 84: val_loss improved from 0.00363 to 0.00353, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 12s 119ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1050 - val_loss: 0.0035 - val_mean_squared_error: 0.0035 - val_mean_absolute_error: 0.0471 Epoch 85/100 100/100 [==============================] - ETA: 0s - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1060 Epoch 85: val_loss did not improve from 0.00353 100/100 [==============================] - 11s 107ms/step - loss: 0.0179 - mean_squared_error: 0.0179 - mean_absolute_error: 0.1060 - val_loss: 0.0037 - val_mean_squared_error: 0.0037 - val_mean_absolute_error: 0.0483 Epoch 86/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1058 Epoch 86: val_loss did not improve from 0.00353 100/100 [==============================] - 13s 130ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1058 - val_loss: 0.0043 - val_mean_squared_error: 0.0043 - val_mean_absolute_error: 0.0525 Epoch 87/100 100/100 [==============================] - ETA: 0s - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1061 Epoch 87: val_loss did not improve from 0.00353 100/100 [==============================] - 10s 104ms/step - loss: 0.0180 - mean_squared_error: 0.0180 - mean_absolute_error: 0.1061 - val_loss: 0.0042 - val_mean_squared_error: 0.0042 - val_mean_absolute_error: 0.0516 Epoch 88/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1056 Epoch 88: val_loss did not improve from 0.00353 100/100 [==============================] - 11s 111ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1056 - val_loss: 0.0041 - val_mean_squared_error: 0.0041 - val_mean_absolute_error: 0.0514 Epoch 89/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1058 Epoch 89: val_loss did not improve from 0.00353 100/100 [==============================] - 10s 96ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1058 - val_loss: 0.0051 - val_mean_squared_error: 0.0051 - val_mean_absolute_error: 0.0573 Epoch 90/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1060 Epoch 90: val_loss did not improve from 0.00353 100/100 [==============================] - 10s 104ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1060 - val_loss: 0.0040 - val_mean_squared_error: 0.0040 - val_mean_absolute_error: 0.0508 Epoch 91/100 100/100 [==============================] - ETA: 0s - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1061 Epoch 91: val_loss did not improve from 0.00353 100/100 [==============================] - 14s 138ms/step - loss: 0.0178 - mean_squared_error: 0.0178 - mean_absolute_error: 0.1061 - val_loss: 0.0036 - val_mean_squared_error: 0.0036 - val_mean_absolute_error: 0.0477 Epoch 92/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1051 Epoch 92: val_loss did not improve from 0.00353 100/100 [==============================] - 12s 124ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1051 - val_loss: 0.0048 - val_mean_squared_error: 0.0048 - val_mean_absolute_error: 0.0559 Epoch 93/100 100/100 [==============================] - ETA: 0s - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1057 Epoch 93: val_loss did not improve from 0.00353 100/100 [==============================] - 13s 125ms/step - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1057 - val_loss: 0.0041 - val_mean_squared_error: 0.0041 - val_mean_absolute_error: 0.0512 Epoch 94/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 Epoch 94: val_loss did not improve from 0.00353 100/100 [==============================] - 13s 126ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 - val_loss: 0.0041 - val_mean_squared_error: 0.0041 - val_mean_absolute_error: 0.0515 Epoch 95/100 100/100 [==============================] - ETA: 0s - loss: 0.0175 - mean_squared_error: 0.0175 - mean_absolute_error: 0.1046 Epoch 95: val_loss did not improve from 0.00353 100/100 [==============================] - 11s 107ms/step - loss: 0.0175 - mean_squared_error: 0.0175 - mean_absolute_error: 0.1046 - val_loss: 0.0036 - val_mean_squared_error: 0.0036 - val_mean_absolute_error: 0.0475 Epoch 96/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 Epoch 96: val_loss did not improve from 0.00353 100/100 [==============================] - 10s 104ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 - val_loss: 0.0045 - val_mean_squared_error: 0.0045 - val_mean_absolute_error: 0.0541 Epoch 97/100 100/100 [==============================] - ETA: 0s - loss: 0.0174 - mean_squared_error: 0.0174 - mean_absolute_error: 0.1045 Epoch 97: val_loss improved from 0.00353 to 0.00351, saving model to cfs4_big_best_model_5000_p1.h5 100/100 [==============================] - 11s 113ms/step - loss: 0.0174 - mean_squared_error: 0.0174 - mean_absolute_error: 0.1045 - val_loss: 0.0035 - val_mean_squared_error: 0.0035 - val_mean_absolute_error: 0.0470 Epoch 98/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 Epoch 98: val_loss did not improve from 0.00351 100/100 [==============================] - 11s 107ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1052 - val_loss: 0.0039 - val_mean_squared_error: 0.0039 - val_mean_absolute_error: 0.0500 Epoch 99/100 100/100 [==============================] - ETA: 0s - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1053 Epoch 99: val_loss did not improve from 0.00351 100/100 [==============================] - 9s 92ms/step - loss: 0.0176 - mean_squared_error: 0.0176 - mean_absolute_error: 0.1053 - val_loss: 0.0039 - val_mean_squared_error: 0.0039 - val_mean_absolute_error: 0.0497 Epoch 100/100 100/100 [==============================] - ETA: 0s - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1054 Epoch 100: val_loss did not improve from 0.00351 100/100 [==============================] - 11s 108ms/step - loss: 0.0177 - mean_squared_error: 0.0177 - mean_absolute_error: 0.1054 - val_loss: 0.0041 - val_mean_squared_error: 0.0041 - val_mean_absolute_error: 0.0509
score = model.evaluate(X_test, y_test, verbose=1)
print("Test loss:", score[0])
print("Test mae:", score[2])
32/32 [==============================] - 1s 32ms/step - loss: 0.0041 - mean_squared_error: 0.0041 - mean_absolute_error: 0.0512 Test loss: 0.0041091484017670155 Test mae: 0.05119636282324791
# Plot the training and validation loss as a function of the epoch
plt.plot(history.history['loss'], label='Training loss')
plt.plot(history.history['val_loss'], label='Validation loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
<matplotlib.legend.Legend at 0x7f362b755660>
# Evaluate the model on the test set
y_pred = model.predict(X_test)
r2 = r2_score(y_test.flatten(), y_pred.flatten())
print("Test R2 score:", r2)
32/32 [==============================] - 2s 46ms/step Test R2 score: 0.9552567958325642
m,b=np.polyfit(y_test.flatten(),y_pred.flatten(),1)
xs=np.linspace(-1,1,10)
ys=m*xs+b
ax=sns.scatterplot(x=y_test.flatten(),y=y_pred.flatten(),marker='o',edgecolor='b',c='none',s=10,alpha=0.7,label='R2:%.2f'%r2)
ax=plt.plot(xs,ys,c='k',marker='none',linestyle='--',alpha=0.6,label='line fit')
ax=plt.legend()
ax=plt.xlim([-1.0,1.0])
ax=plt.ylim([-1.0,1.0])
ax=plt.margins(0.25)
ax=plt.xlabel('Actual Values')
ax=plt.ylabel('Predicted Values')
ax=plt.title('Predicted vs Actual Values')
# Load the saved weights into the model
# model.load_weights('cfs4_big_best_model_5000_p12.h5')
batch_size = 64
epochs = 100
# Define checkpoint callback
checkpoint = ModelCheckpoint('cfs4_big_best_model_5000_p12.h5', monitor='val_loss', save_best_only=True, mode='min', verbose=1)
# opt = keras.optimizers.Adam(learning_rate=0.01) # not using this atm
model.compile(loss="mse", optimizer="adam", metrics=[MeanSquaredError(),MeanAbsoluteError()])
# ## Evaluate the trained model
history12 =model.fit(X_train12,y_train12,batch_size=batch_size, epochs=epochs, validation_split=0.2,callbacks=[checkpoint])
Epoch 1/100 100/100 [==============================] - ETA: 0s - loss: 1.5452 - mean_squared_error: 1.5452 - mean_absolute_error: 0.8234 Epoch 1: val_loss improved from inf to 0.10300, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 473ms/step - loss: 1.5452 - mean_squared_error: 1.5452 - mean_absolute_error: 0.8234 - val_loss: 0.1030 - val_mean_squared_error: 0.1030 - val_mean_absolute_error: 0.2574 Epoch 2/100 100/100 [==============================] - ETA: 0s - loss: 0.8059 - mean_squared_error: 0.8059 - mean_absolute_error: 0.5928 Epoch 2: val_loss improved from 0.10300 to 0.08203, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 50s 504ms/step - loss: 0.8059 - mean_squared_error: 0.8059 - mean_absolute_error: 0.5928 - val_loss: 0.0820 - val_mean_squared_error: 0.0820 - val_mean_absolute_error: 0.2380 Epoch 3/100 100/100 [==============================] - ETA: 0s - loss: 0.5338 - mean_squared_error: 0.5338 - mean_absolute_error: 0.4901 Epoch 3: val_loss improved from 0.08203 to 0.07816, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 480ms/step - loss: 0.5338 - mean_squared_error: 0.5338 - mean_absolute_error: 0.4901 - val_loss: 0.0782 - val_mean_squared_error: 0.0782 - val_mean_absolute_error: 0.2317 Epoch 4/100 100/100 [==============================] - ETA: 0s - loss: 0.3536 - mean_squared_error: 0.3536 - mean_absolute_error: 0.4089 Epoch 4: val_loss improved from 0.07816 to 0.06787, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 484ms/step - loss: 0.3536 - mean_squared_error: 0.3536 - mean_absolute_error: 0.4089 - val_loss: 0.0679 - val_mean_squared_error: 0.0679 - val_mean_absolute_error: 0.2159 Epoch 5/100 100/100 [==============================] - ETA: 0s - loss: 0.2386 - mean_squared_error: 0.2386 - mean_absolute_error: 0.3442 Epoch 5: val_loss improved from 0.06787 to 0.05503, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 50s 502ms/step - loss: 0.2386 - mean_squared_error: 0.2386 - mean_absolute_error: 0.3442 - val_loss: 0.0550 - val_mean_squared_error: 0.0550 - val_mean_absolute_error: 0.1931 Epoch 6/100 100/100 [==============================] - ETA: 0s - loss: 0.1598 - mean_squared_error: 0.1598 - mean_absolute_error: 0.2854 Epoch 6: val_loss improved from 0.05503 to 0.04151, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 51s 505ms/step - loss: 0.1598 - mean_squared_error: 0.1598 - mean_absolute_error: 0.2854 - val_loss: 0.0415 - val_mean_squared_error: 0.0415 - val_mean_absolute_error: 0.1650 Epoch 7/100 100/100 [==============================] - ETA: 0s - loss: 0.1072 - mean_squared_error: 0.1072 - mean_absolute_error: 0.2375 Epoch 7: val_loss improved from 0.04151 to 0.03189, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 490ms/step - loss: 0.1072 - mean_squared_error: 0.1072 - mean_absolute_error: 0.2375 - val_loss: 0.0319 - val_mean_squared_error: 0.0319 - val_mean_absolute_error: 0.1425 Epoch 8/100 100/100 [==============================] - ETA: 0s - loss: 0.0726 - mean_squared_error: 0.0726 - mean_absolute_error: 0.1975 Epoch 8: val_loss improved from 0.03189 to 0.02544, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 492ms/step - loss: 0.0726 - mean_squared_error: 0.0726 - mean_absolute_error: 0.1975 - val_loss: 0.0254 - val_mean_squared_error: 0.0254 - val_mean_absolute_error: 0.1254 Epoch 9/100 100/100 [==============================] - ETA: 0s - loss: 0.0498 - mean_squared_error: 0.0498 - mean_absolute_error: 0.1659 Epoch 9: val_loss improved from 0.02544 to 0.02176, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 483ms/step - loss: 0.0498 - mean_squared_error: 0.0498 - mean_absolute_error: 0.1659 - val_loss: 0.0218 - val_mean_squared_error: 0.0218 - val_mean_absolute_error: 0.1141 Epoch 10/100 100/100 [==============================] - ETA: 0s - loss: 0.0385 - mean_squared_error: 0.0385 - mean_absolute_error: 0.1458 Epoch 10: val_loss improved from 0.02176 to 0.01971, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 50s 500ms/step - loss: 0.0385 - mean_squared_error: 0.0385 - mean_absolute_error: 0.1458 - val_loss: 0.0197 - val_mean_squared_error: 0.0197 - val_mean_absolute_error: 0.1067 Epoch 11/100 100/100 [==============================] - ETA: 0s - loss: 0.0409 - mean_squared_error: 0.0409 - mean_absolute_error: 0.1545 Epoch 11: val_loss improved from 0.01971 to 0.01604, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 50s 501ms/step - loss: 0.0409 - mean_squared_error: 0.0409 - mean_absolute_error: 0.1545 - val_loss: 0.0160 - val_mean_squared_error: 0.0160 - val_mean_absolute_error: 0.0885 Epoch 12/100 100/100 [==============================] - ETA: 0s - loss: 0.0345 - mean_squared_error: 0.0345 - mean_absolute_error: 0.1408 Epoch 12: val_loss improved from 0.01604 to 0.01571, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 493ms/step - loss: 0.0345 - mean_squared_error: 0.0345 - mean_absolute_error: 0.1408 - val_loss: 0.0157 - val_mean_squared_error: 0.0157 - val_mean_absolute_error: 0.0869 Epoch 13/100 100/100 [==============================] - ETA: 0s - loss: 0.0322 - mean_squared_error: 0.0322 - mean_absolute_error: 0.1327 Epoch 13: val_loss did not improve from 0.01571 100/100 [==============================] - 48s 478ms/step - loss: 0.0322 - mean_squared_error: 0.0322 - mean_absolute_error: 0.1327 - val_loss: 0.0158 - val_mean_squared_error: 0.0158 - val_mean_absolute_error: 0.0874 Epoch 14/100 100/100 [==============================] - ETA: 0s - loss: 0.0294 - mean_squared_error: 0.0294 - mean_absolute_error: 0.1290 Epoch 14: val_loss improved from 0.01571 to 0.01551, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 488ms/step - loss: 0.0294 - mean_squared_error: 0.0294 - mean_absolute_error: 0.1290 - val_loss: 0.0155 - val_mean_squared_error: 0.0155 - val_mean_absolute_error: 0.0863 Epoch 15/100 100/100 [==============================] - ETA: 0s - loss: 0.0281 - mean_squared_error: 0.0281 - mean_absolute_error: 0.1259 Epoch 15: val_loss improved from 0.01551 to 0.01502, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 50s 495ms/step - loss: 0.0281 - mean_squared_error: 0.0281 - mean_absolute_error: 0.1259 - val_loss: 0.0150 - val_mean_squared_error: 0.0150 - val_mean_absolute_error: 0.0836 Epoch 16/100 100/100 [==============================] - ETA: 0s - loss: 0.0283 - mean_squared_error: 0.0283 - mean_absolute_error: 0.1248 Epoch 16: val_loss did not improve from 0.01502 100/100 [==============================] - 48s 480ms/step - loss: 0.0283 - mean_squared_error: 0.0283 - mean_absolute_error: 0.1248 - val_loss: 0.0151 - val_mean_squared_error: 0.0151 - val_mean_absolute_error: 0.0840 Epoch 17/100 100/100 [==============================] - ETA: 0s - loss: 0.0277 - mean_squared_error: 0.0277 - mean_absolute_error: 0.1244 Epoch 17: val_loss did not improve from 0.01502 100/100 [==============================] - 50s 499ms/step - loss: 0.0277 - mean_squared_error: 0.0277 - mean_absolute_error: 0.1244 - val_loss: 0.0151 - val_mean_squared_error: 0.0151 - val_mean_absolute_error: 0.0840 Epoch 18/100 100/100 [==============================] - ETA: 0s - loss: 0.0271 - mean_squared_error: 0.0271 - mean_absolute_error: 0.1226 Epoch 18: val_loss improved from 0.01502 to 0.01479, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 51s 507ms/step - loss: 0.0271 - mean_squared_error: 0.0271 - mean_absolute_error: 0.1226 - val_loss: 0.0148 - val_mean_squared_error: 0.0148 - val_mean_absolute_error: 0.0826 Epoch 19/100 100/100 [==============================] - ETA: 0s - loss: 0.0272 - mean_squared_error: 0.0272 - mean_absolute_error: 0.1228 Epoch 19: val_loss improved from 0.01479 to 0.01455, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 478ms/step - loss: 0.0272 - mean_squared_error: 0.0272 - mean_absolute_error: 0.1228 - val_loss: 0.0146 - val_mean_squared_error: 0.0146 - val_mean_absolute_error: 0.0812 Epoch 20/100 100/100 [==============================] - ETA: 0s - loss: 0.0266 - mean_squared_error: 0.0266 - mean_absolute_error: 0.1216 Epoch 20: val_loss improved from 0.01455 to 0.01449, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 51s 509ms/step - loss: 0.0266 - mean_squared_error: 0.0266 - mean_absolute_error: 0.1216 - val_loss: 0.0145 - val_mean_squared_error: 0.0145 - val_mean_absolute_error: 0.0807 Epoch 21/100 100/100 [==============================] - ETA: 0s - loss: 0.0267 - mean_squared_error: 0.0267 - mean_absolute_error: 0.1215 Epoch 21: val_loss improved from 0.01449 to 0.01436, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 489ms/step - loss: 0.0267 - mean_squared_error: 0.0267 - mean_absolute_error: 0.1215 - val_loss: 0.0144 - val_mean_squared_error: 0.0144 - val_mean_absolute_error: 0.0800 Epoch 22/100 100/100 [==============================] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1207 Epoch 22: val_loss did not improve from 0.01436 100/100 [==============================] - 45s 453ms/step - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1207 - val_loss: 0.0145 - val_mean_squared_error: 0.0145 - val_mean_absolute_error: 0.0809 Epoch 23/100 100/100 [==============================] - ETA: 0s - loss: 0.0263 - mean_squared_error: 0.0263 - mean_absolute_error: 0.1202 Epoch 23: val_loss improved from 0.01436 to 0.01435, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 492ms/step - loss: 0.0263 - mean_squared_error: 0.0263 - mean_absolute_error: 0.1202 - val_loss: 0.0143 - val_mean_squared_error: 0.0143 - val_mean_absolute_error: 0.0802 Epoch 24/100 100/100 [==============================] - ETA: 0s - loss: 0.0317 - mean_squared_error: 0.0317 - mean_absolute_error: 0.1324 Epoch 24: val_loss did not improve from 0.01435 100/100 [==============================] - 46s 462ms/step - loss: 0.0317 - mean_squared_error: 0.0317 - mean_absolute_error: 0.1324 - val_loss: 0.0808 - val_mean_squared_error: 0.0808 - val_mean_absolute_error: 0.2082 Epoch 25/100 100/100 [==============================] - ETA: 0s - loss: 0.0381 - mean_squared_error: 0.0381 - mean_absolute_error: 0.1503 Epoch 25: val_loss improved from 0.01435 to 0.01355, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 491ms/step - loss: 0.0381 - mean_squared_error: 0.0381 - mean_absolute_error: 0.1503 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0683 Epoch 26/100 100/100 [==============================] - ETA: 0s - loss: 0.0303 - mean_squared_error: 0.0303 - mean_absolute_error: 0.1314 Epoch 26: val_loss improved from 0.01355 to 0.01354, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 46s 463ms/step - loss: 0.0303 - mean_squared_error: 0.0303 - mean_absolute_error: 0.1314 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0728 Epoch 27/100 100/100 [==============================] - ETA: 0s - loss: 0.0288 - mean_squared_error: 0.0288 - mean_absolute_error: 0.1274 Epoch 27: val_loss did not improve from 0.01354 100/100 [==============================] - 48s 478ms/step - loss: 0.0288 - mean_squared_error: 0.0288 - mean_absolute_error: 0.1274 - val_loss: 0.0139 - val_mean_squared_error: 0.0139 - val_mean_absolute_error: 0.0760 Epoch 28/100 100/100 [==============================] - ETA: 0s - loss: 0.0281 - mean_squared_error: 0.0281 - mean_absolute_error: 0.1255 Epoch 28: val_loss did not improve from 0.01354 100/100 [==============================] - 49s 490ms/step - loss: 0.0281 - mean_squared_error: 0.0281 - mean_absolute_error: 0.1255 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0771 Epoch 29/100 100/100 [==============================] - ETA: 0s - loss: 0.0278 - mean_squared_error: 0.0278 - mean_absolute_error: 0.1245 Epoch 29: val_loss did not improve from 0.01354 100/100 [==============================] - 48s 478ms/step - loss: 0.0278 - mean_squared_error: 0.0278 - mean_absolute_error: 0.1245 - val_loss: 0.0143 - val_mean_squared_error: 0.0143 - val_mean_absolute_error: 0.0789 Epoch 30/100 100/100 [==============================] - ETA: 0s - loss: 0.0274 - mean_squared_error: 0.0274 - mean_absolute_error: 0.1235 Epoch 30: val_loss did not improve from 0.01354 100/100 [==============================] - 49s 492ms/step - loss: 0.0274 - mean_squared_error: 0.0274 - mean_absolute_error: 0.1235 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0790 Epoch 31/100 100/100 [==============================] - ETA: 0s - loss: 0.0269 - mean_squared_error: 0.0269 - mean_absolute_error: 0.1221 Epoch 31: val_loss did not improve from 0.01354 100/100 [==============================] - 50s 500ms/step - loss: 0.0269 - mean_squared_error: 0.0269 - mean_absolute_error: 0.1221 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0785 Epoch 32/100 100/100 [==============================] - ETA: 0s - loss: 0.0268 - mean_squared_error: 0.0268 - mean_absolute_error: 0.1216 Epoch 32: val_loss did not improve from 0.01354 100/100 [==============================] - 49s 491ms/step - loss: 0.0268 - mean_squared_error: 0.0268 - mean_absolute_error: 0.1216 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0782 Epoch 33/100 100/100 [==============================] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1206 Epoch 33: val_loss did not improve from 0.01354 100/100 [==============================] - 50s 497ms/step - loss: 0.0264 - mean_squared_error: 0.0264 - mean_absolute_error: 0.1206 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0793 Epoch 34/100 100/100 [==============================] - ETA: 0s - loss: 0.0261 - mean_squared_error: 0.0261 - mean_absolute_error: 0.1201 Epoch 34: val_loss did not improve from 0.01354 100/100 [==============================] - 45s 455ms/step - loss: 0.0261 - mean_squared_error: 0.0261 - mean_absolute_error: 0.1201 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0775 Epoch 35/100 100/100 [==============================] - ETA: 0s - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1197 Epoch 35: val_loss did not improve from 0.01354 100/100 [==============================] - 46s 457ms/step - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1197 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0785 Epoch 36/100 100/100 [==============================] - ETA: 0s - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1197 Epoch 36: val_loss did not improve from 0.01354 100/100 [==============================] - 46s 458ms/step - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1197 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0793 Epoch 37/100 100/100 [==============================] - ETA: 0s - loss: 0.0261 - mean_squared_error: 0.0261 - mean_absolute_error: 0.1195 Epoch 37: val_loss did not improve from 0.01354 100/100 [==============================] - 50s 496ms/step - loss: 0.0261 - mean_squared_error: 0.0261 - mean_absolute_error: 0.1195 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0775 Epoch 38/100 100/100 [==============================] - ETA: 0s - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1194 Epoch 38: val_loss did not improve from 0.01354 100/100 [==============================] - 50s 500ms/step - loss: 0.0260 - mean_squared_error: 0.0260 - mean_absolute_error: 0.1194 - val_loss: 0.0137 - val_mean_squared_error: 0.0137 - val_mean_absolute_error: 0.0763 Epoch 39/100 100/100 [==============================] - ETA: 0s - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1187 Epoch 39: val_loss did not improve from 0.01354 100/100 [==============================] - 50s 505ms/step - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1187 - val_loss: 0.0144 - val_mean_squared_error: 0.0144 - val_mean_absolute_error: 0.0801 Epoch 40/100 100/100 [==============================] - ETA: 0s - loss: 0.0262 - mean_squared_error: 0.0262 - mean_absolute_error: 0.1197 Epoch 40: val_loss did not improve from 0.01354 100/100 [==============================] - 47s 471ms/step - loss: 0.0262 - mean_squared_error: 0.0262 - mean_absolute_error: 0.1197 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0753 Epoch 41/100 100/100 [==============================] - ETA: 0s - loss: 0.0259 - mean_squared_error: 0.0259 - mean_absolute_error: 0.1188 Epoch 41: val_loss did not improve from 0.01354 100/100 [==============================] - 47s 468ms/step - loss: 0.0259 - mean_squared_error: 0.0259 - mean_absolute_error: 0.1188 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0782 Epoch 42/100 100/100 [==============================] - ETA: 0s - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1189 Epoch 42: val_loss did not improve from 0.01354 100/100 [==============================] - 46s 461ms/step - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1189 - val_loss: 0.0137 - val_mean_squared_error: 0.0137 - val_mean_absolute_error: 0.0761 Epoch 43/100 100/100 [==============================] - ETA: 0s - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1175 Epoch 43: val_loss improved from 0.01354 to 0.01352, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 46s 463ms/step - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1175 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0746 Epoch 44/100 100/100 [==============================] - ETA: 0s - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1181 Epoch 44: val_loss did not improve from 0.01352 100/100 [==============================] - 47s 467ms/step - loss: 0.0258 - mean_squared_error: 0.0258 - mean_absolute_error: 0.1181 - val_loss: 0.0138 - val_mean_squared_error: 0.0138 - val_mean_absolute_error: 0.0768 Epoch 45/100 100/100 [==============================] - ETA: 0s - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1179 Epoch 45: val_loss did not improve from 0.01352 100/100 [==============================] - 45s 451ms/step - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1179 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0755 Epoch 46/100 100/100 [==============================] - ETA: 0s - loss: 0.0256 - mean_squared_error: 0.0256 - mean_absolute_error: 0.1175 Epoch 46: val_loss did not improve from 0.01352 100/100 [==============================] - 47s 472ms/step - loss: 0.0256 - mean_squared_error: 0.0256 - mean_absolute_error: 0.1175 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0780 Epoch 47/100 100/100 [==============================] - ETA: 0s - loss: 0.0255 - mean_squared_error: 0.0255 - mean_absolute_error: 0.1177 Epoch 47: val_loss did not improve from 0.01352 100/100 [==============================] - 47s 471ms/step - loss: 0.0255 - mean_squared_error: 0.0255 - mean_absolute_error: 0.1177 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0790 Epoch 48/100 100/100 [==============================] - ETA: 0s - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1172 Epoch 48: val_loss did not improve from 0.01352 100/100 [==============================] - 48s 480ms/step - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1172 - val_loss: 0.0139 - val_mean_squared_error: 0.0139 - val_mean_absolute_error: 0.0777 Epoch 49/100 100/100 [==============================] - ETA: 0s - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1172 Epoch 49: val_loss did not improve from 0.01352 100/100 [==============================] - 47s 470ms/step - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1172 - val_loss: 0.0138 - val_mean_squared_error: 0.0138 - val_mean_absolute_error: 0.0767 Epoch 50/100 100/100 [==============================] - ETA: 0s - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1173 Epoch 50: val_loss improved from 0.01352 to 0.01347, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 47s 469ms/step - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1173 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0746 Epoch 51/100 100/100 [==============================] - ETA: 0s - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1172 Epoch 51: val_loss did not improve from 0.01347 100/100 [==============================] - 48s 484ms/step - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1172 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0785 Epoch 52/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1167 Epoch 52: val_loss improved from 0.01347 to 0.01337, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 483ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1167 - val_loss: 0.0134 - val_mean_squared_error: 0.0134 - val_mean_absolute_error: 0.0740 Epoch 53/100 100/100 [==============================] - ETA: 0s - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1169 Epoch 53: val_loss improved from 0.01337 to 0.01332, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 485ms/step - loss: 0.0253 - mean_squared_error: 0.0253 - mean_absolute_error: 0.1169 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0737 Epoch 54/100 100/100 [==============================] - ETA: 0s - loss: 0.0256 - mean_squared_error: 0.0256 - mean_absolute_error: 0.1171 Epoch 54: val_loss did not improve from 0.01332 100/100 [==============================] - 49s 486ms/step - loss: 0.0256 - mean_squared_error: 0.0256 - mean_absolute_error: 0.1171 - val_loss: 0.0138 - val_mean_squared_error: 0.0138 - val_mean_absolute_error: 0.0765 Epoch 55/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1166 Epoch 55: val_loss did not improve from 0.01332 100/100 [==============================] - 48s 486ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1166 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0739 Epoch 56/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1163 Epoch 56: val_loss did not improve from 0.01332 100/100 [==============================] - 49s 486ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1163 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0784 Epoch 57/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1166 Epoch 57: val_loss did not improve from 0.01332 100/100 [==============================] - 48s 475ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1166 - val_loss: 0.0134 - val_mean_squared_error: 0.0134 - val_mean_absolute_error: 0.0742 Epoch 58/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 Epoch 58: val_loss did not improve from 0.01332 100/100 [==============================] - 48s 482ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0759 Epoch 59/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1160 Epoch 59: val_loss did not improve from 0.01332 100/100 [==============================] - 49s 488ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1160 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0746 Epoch 60/100 100/100 [==============================] - ETA: 0s - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1161 Epoch 60: val_loss did not improve from 0.01332 100/100 [==============================] - 46s 461ms/step - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1161 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0798 Epoch 61/100 100/100 [==============================] - ETA: 0s - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1164 Epoch 61: val_loss did not improve from 0.01332 100/100 [==============================] - 46s 460ms/step - loss: 0.0250 - mean_squared_error: 0.0250 - mean_absolute_error: 0.1164 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0756 Epoch 62/100 100/100 [==============================] - ETA: 0s - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1167 Epoch 62: val_loss did not improve from 0.01332 100/100 [==============================] - 49s 488ms/step - loss: 0.0254 - mean_squared_error: 0.0254 - mean_absolute_error: 0.1167 - val_loss: 0.0136 - val_mean_squared_error: 0.0136 - val_mean_absolute_error: 0.0754 Epoch 63/100 100/100 [==============================] - ETA: 0s - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1158 Epoch 63: val_loss did not improve from 0.01332 100/100 [==============================] - 48s 482ms/step - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1158 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0786 Epoch 64/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 Epoch 64: val_loss improved from 0.01332 to 0.01331, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 47s 475ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0735 Epoch 65/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 Epoch 65: val_loss improved from 0.01331 to 0.01292, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 49s 491ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 - val_loss: 0.0129 - val_mean_squared_error: 0.0129 - val_mean_absolute_error: 0.0706 Epoch 66/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 Epoch 66: val_loss did not improve from 0.01292 100/100 [==============================] - 50s 504ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 - val_loss: 0.0130 - val_mean_squared_error: 0.0130 - val_mean_absolute_error: 0.0715 Epoch 67/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 Epoch 67: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 485ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1162 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0787 Epoch 68/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 Epoch 68: val_loss did not improve from 0.01292 100/100 [==============================] - 47s 474ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1163 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0796 Epoch 69/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1161 Epoch 69: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 478ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1161 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0745 Epoch 70/100 100/100 [==============================] - ETA: 0s - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1155 Epoch 70: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 483ms/step - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1155 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0786 Epoch 71/100 100/100 [==============================] - ETA: 0s - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1156 Epoch 71: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 488ms/step - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1156 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0737 Epoch 72/100 100/100 [==============================] - ETA: 0s - loss: 0.0246 - mean_squared_error: 0.0246 - mean_absolute_error: 0.1153 Epoch 72: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 483ms/step - loss: 0.0246 - mean_squared_error: 0.0246 - mean_absolute_error: 0.1153 - val_loss: 0.0143 - val_mean_squared_error: 0.0143 - val_mean_absolute_error: 0.0798 Epoch 73/100 100/100 [==============================] - ETA: 0s - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1161 Epoch 73: val_loss did not improve from 0.01292 100/100 [==============================] - 45s 452ms/step - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1161 - val_loss: 0.0130 - val_mean_squared_error: 0.0130 - val_mean_absolute_error: 0.0717 Epoch 74/100 100/100 [==============================] - ETA: 0s - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1158 Epoch 74: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 493ms/step - loss: 0.0248 - mean_squared_error: 0.0248 - mean_absolute_error: 0.1158 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0785 Epoch 75/100 100/100 [==============================] - ETA: 0s - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1158 Epoch 75: val_loss improved from 0.01292 to 0.01292, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 484ms/step - loss: 0.0247 - mean_squared_error: 0.0247 - mean_absolute_error: 0.1158 - val_loss: 0.0129 - val_mean_squared_error: 0.0129 - val_mean_absolute_error: 0.0703 Epoch 76/100 100/100 [==============================] - ETA: 0s - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1155 Epoch 76: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 483ms/step - loss: 0.0249 - mean_squared_error: 0.0249 - mean_absolute_error: 0.1155 - val_loss: 0.0137 - val_mean_squared_error: 0.0137 - val_mean_absolute_error: 0.0762 Epoch 77/100 100/100 [==============================] - ETA: 0s - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1155 Epoch 77: val_loss did not improve from 0.01292 100/100 [==============================] - 51s 512ms/step - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1155 - val_loss: 0.0129 - val_mean_squared_error: 0.0129 - val_mean_absolute_error: 0.0710 Epoch 78/100 100/100 [==============================] - ETA: 0s - loss: 0.0246 - mean_squared_error: 0.0246 - mean_absolute_error: 0.1154 Epoch 78: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 480ms/step - loss: 0.0246 - mean_squared_error: 0.0246 - mean_absolute_error: 0.1154 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0781 Epoch 79/100 100/100 [==============================] - ETA: 0s - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1153 Epoch 79: val_loss did not improve from 0.01292 100/100 [==============================] - 52s 524ms/step - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1153 - val_loss: 0.0141 - val_mean_squared_error: 0.0141 - val_mean_absolute_error: 0.0795 Epoch 80/100 100/100 [==============================] - ETA: 0s - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1149 Epoch 80: val_loss did not improve from 0.01292 100/100 [==============================] - 50s 498ms/step - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1149 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0724 Epoch 81/100 100/100 [==============================] - ETA: 0s - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.1147 Epoch 81: val_loss did not improve from 0.01292 100/100 [==============================] - 50s 496ms/step - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.1147 - val_loss: 0.0138 - val_mean_squared_error: 0.0138 - val_mean_absolute_error: 0.0771 Epoch 82/100 100/100 [==============================] - ETA: 0s - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1152 Epoch 82: val_loss did not improve from 0.01292 100/100 [==============================] - 50s 497ms/step - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1152 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0736 Epoch 83/100 100/100 [==============================] - ETA: 0s - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1150 Epoch 83: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 491ms/step - loss: 0.0243 - mean_squared_error: 0.0243 - mean_absolute_error: 0.1150 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0752 Epoch 84/100 100/100 [==============================] - ETA: 0s - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.1147 Epoch 84: val_loss did not improve from 0.01292 100/100 [==============================] - 47s 471ms/step - loss: 0.0242 - mean_squared_error: 0.0242 - mean_absolute_error: 0.1147 - val_loss: 0.0140 - val_mean_squared_error: 0.0140 - val_mean_absolute_error: 0.0782 Epoch 85/100 100/100 [==============================] - ETA: 0s - loss: 0.0244 - mean_squared_error: 0.0244 - mean_absolute_error: 0.1155 Epoch 85: val_loss did not improve from 0.01292 100/100 [==============================] - 47s 468ms/step - loss: 0.0244 - mean_squared_error: 0.0244 - mean_absolute_error: 0.1155 - val_loss: 0.0142 - val_mean_squared_error: 0.0142 - val_mean_absolute_error: 0.0799 Epoch 86/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1144 Epoch 86: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 484ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1144 - val_loss: 0.0131 - val_mean_squared_error: 0.0131 - val_mean_absolute_error: 0.0721 Epoch 87/100 100/100 [==============================] - ETA: 0s - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1143 Epoch 87: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 488ms/step - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1143 - val_loss: 0.0137 - val_mean_squared_error: 0.0137 - val_mean_absolute_error: 0.0765 Epoch 88/100 100/100 [==============================] - ETA: 0s - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1147 Epoch 88: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 478ms/step - loss: 0.0245 - mean_squared_error: 0.0245 - mean_absolute_error: 0.1147 - val_loss: 0.0133 - val_mean_squared_error: 0.0133 - val_mean_absolute_error: 0.0737 Epoch 89/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1137 Epoch 89: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 490ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1137 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0731 Epoch 90/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1142 Epoch 90: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 490ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1142 - val_loss: 0.0135 - val_mean_squared_error: 0.0135 - val_mean_absolute_error: 0.0752 Epoch 91/100 100/100 [==============================] - ETA: 0s - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1143 Epoch 91: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 489ms/step - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1143 - val_loss: 0.0139 - val_mean_squared_error: 0.0139 - val_mean_absolute_error: 0.0777 Epoch 92/100 100/100 [==============================] - ETA: 0s - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1146 Epoch 92: val_loss did not improve from 0.01292 100/100 [==============================] - 47s 474ms/step - loss: 0.0241 - mean_squared_error: 0.0241 - mean_absolute_error: 0.1146 - val_loss: 0.0134 - val_mean_squared_error: 0.0134 - val_mean_absolute_error: 0.0744 Epoch 93/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1141 Epoch 93: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 484ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1141 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0730 Epoch 94/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1139 Epoch 94: val_loss did not improve from 0.01292 100/100 [==============================] - 51s 506ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1139 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0736 Epoch 95/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1142 Epoch 95: val_loss did not improve from 0.01292 100/100 [==============================] - 49s 487ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1142 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0734 Epoch 96/100 100/100 [==============================] - ETA: 0s - loss: 0.0238 - mean_squared_error: 0.0238 - mean_absolute_error: 0.1141 Epoch 96: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 476ms/step - loss: 0.0238 - mean_squared_error: 0.0238 - mean_absolute_error: 0.1141 - val_loss: 0.0132 - val_mean_squared_error: 0.0132 - val_mean_absolute_error: 0.0733 Epoch 97/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1141 Epoch 97: val_loss did not improve from 0.01292 100/100 [==============================] - 48s 484ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1141 - val_loss: 0.0130 - val_mean_squared_error: 0.0130 - val_mean_absolute_error: 0.0699 Epoch 98/100 100/100 [==============================] - ETA: 0s - loss: 0.0236 - mean_squared_error: 0.0236 - mean_absolute_error: 0.1136 Epoch 98: val_loss improved from 0.01292 to 0.01203, saving model to cfs4_big_best_model_5000_p12.h5 100/100 [==============================] - 48s 485ms/step - loss: 0.0236 - mean_squared_error: 0.0236 - mean_absolute_error: 0.1136 - val_loss: 0.0120 - val_mean_squared_error: 0.0120 - val_mean_absolute_error: 0.0630 Epoch 99/100 100/100 [==============================] - ETA: 0s - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1140 Epoch 99: val_loss did not improve from 0.01203 100/100 [==============================] - 48s 482ms/step - loss: 0.0239 - mean_squared_error: 0.0239 - mean_absolute_error: 0.1140 - val_loss: 0.0128 - val_mean_squared_error: 0.0128 - val_mean_absolute_error: 0.0699 Epoch 100/100 100/100 [==============================] - ETA: 0s - loss: 0.0236 - mean_squared_error: 0.0236 - mean_absolute_error: 0.1139 Epoch 100: val_loss did not improve from 0.01203 100/100 [==============================] - 48s 481ms/step - loss: 0.0236 - mean_squared_error: 0.0236 - mean_absolute_error: 0.1139 - val_loss: 0.0124 - val_mean_squared_error: 0.0124 - val_mean_absolute_error: 0.0652
score = model.evaluate(X_test12, y_test12, verbose=1)
print("Test loss:", score[0])
print("Test mae:", score[2])
63/63 [==============================] - 6s 97ms/step - loss: 0.0114 - mean_squared_error: 0.0114 - mean_absolute_error: 0.0633 Test loss: 0.011386232450604439 Test mae: 0.06334599107503891
# Plot the training and validation loss as a function of the epoch
plt.plot(history12.history['loss'], label='Training loss')
plt.plot(history12.history['val_loss'], label='Validation loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
<matplotlib.legend.Legend at 0x7f25942b1660>
# Evaluate the model on the test set
y_pred = model.predict(X_test12)
r2 = r2_score(y_test12.flatten(), y_pred.flatten())
print("Test R2 score:", r2)
63/63 [==============================] - 5s 80ms/step Test R2 score: 0.8746495947365023
m,b=np.polyfit(y_test12.flatten(),y_pred.flatten(),1)
xs=np.linspace(-1,1,10)
ys=m*xs+b
ax=sns.scatterplot(x=y_test12.flatten(),y=y_pred.flatten(),marker='o',edgecolor='b',c='none',s=10,alpha=0.7,label='R2:%.2f'%r2)
ax=plt.plot(xs,ys,c='k',marker='none',linestyle='--',alpha=0.6,label='line fit')
ax=plt.legend()
ax=plt.xlim([-1.0,1.0])
ax=plt.ylim([-1.0,1.0])
ax=plt.margins(0.25)
ax=plt.xlabel('Actual Values')
ax=plt.ylabel('Predicted Values')
ax=plt.title('Predicted vs Actual Values')
iconc=0.50 # spin concentration
cread=0 # reading correlation function from input file otherwise it will be generated randomly
icycles=300 # MC cycles
ianneal=300 # MC input
# np.shape(X_test[xvar].reshape((64,-1)))
# ax=imshow(np.flip(X_test[xvar].reshape((64,-1)),0),cmap='gray')
xvar=np.random.randint(0,np.shape(X_test)[0],1)[0]
y_pred = model.predict(X_test)
y_pred[xvar]
# np.shape(X_test[xvar])
#imshow(np.transpose(occ2d),interpolation='nearest',cmap='gray')
32/32 [==============================] - 1s 37ms/step
array([ 0.1971551 , -0.00580395, 0.4357482 , -0.1472035 , -0.14021431, -0.20304161, -0.29582363, 0.02727254, -0.40242672, -0.15834169, 0.34120378, 0.20017645, 0.28992668, 0.2872952 , 0.32804775], dtype=float32)
def get_metrics_ypred_ytest(xvar):
corr_test=y_test[xvar]
corr_pred=y_pred[xvar]
r2y = r2_score(corr_test, corr_pred)
msey=mean_squared_error(corr_test, corr_pred)
maey=mean_absolute_error(corr_test, corr_pred)
return [r2y,msey,maey]
def get_metrics_compare_regens_test_set(xvar,exp=1):
corr_in=y_test[xvar]
corr_in=np.r_[1.0,corr_in]
corr_out=np.loadtxt('./expfiles_%d/corr.out'%exp)
imdat_0 = X_test[xvar].reshape((64,-1))
imdat_1 = read_bin('./expfiles_%d/hk0.bin'%exp, npixels=64, offset=1280)
# print(corr_in, corr_out.flatten())
# print(np.shape(imdat_0))
# print(np.shape(imdat_1))
r2c = r2_score(corr_in.flatten(), corr_out.flatten())
msec=mean_squared_error(corr_in,corr_out.flatten())
maec=mean_absolute_error(corr_in,corr_out.flatten())
r2i=r2_score(imdat_0.flatten(),imdat_1.flatten())
msei=mean_squared_error(imdat_0.flatten(),imdat_1.flatten())
maei=mean_absolute_error(imdat_0.flatten(),imdat_1.flatten())
return [r2c,msec,maec,r2i,msei,maei]
# get_metrics_compare_regens_test_set(xvar,exp=1)
# Create a figure and axis for the plot
# Define a function to update the plot
def update_plot_regen(xvar):
rows,cols =1,3
fig, axes = plt.subplots(rows, cols, figsize=(6,6))
imdat = X_test[xvar].reshape((64,-1))
axes[0].imshow(np.flip(imdat,0),cmap='gray')
axes[0].axis("off")
corrin=y_test[xvar]
fhout=open('corr.in','w')
fhout.write("1.000000 %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n"%(tuple(corrin.flatten())))
fhout.close()
calc_diffuse_cfs4(iconc,1,icycles,ianneal,1) # do the regen on the image
occ3D=get_occ_map('./expfiles_1/ising2D_occ.txt')
axes[1].imshow(np.transpose(occ3D[:,:,0]),interpolation='nearest',cmap='gray')
axes[1].axis("off")
imdat = read_bin('./expfiles_1/hk0.bin', npixels=64, offset=1280)
axes[2].imshow(np.flip(imdat,0),cmap='gray')
axes[2].axis("off")
my_metrics=get_metrics_compare_regens_test_set(xvar)
fig.suptitle(" metrics(r2, mse, mae)\n corrfunc: %.3f, %.3f, %.3f \n FT_metrics: %.3f, %.3f, %.3f " %(tuple(my_metrics)), fontsize=10,y=0.73)
# Create a figure and axis for the plot
# Define a function to update the plot
def update_plot_ypred(xvar):
rows,cols =1,3
fig, axes = plt.subplots(rows, cols, figsize=(6,6))
imdat = X_test[xvar].reshape((64,-1))
axes[0].imshow(np.flip(imdat,0),cmap='gray')
axes[0].axis("off")
corrin=y_pred[xvar]
fhout=open('corr.in','w')
fhout.write("1.000000 %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n%.6f %.6f %.6f %.6f\n"%(tuple(corrin.flatten())))
fhout.close()
calc_diffuse_cfs4(iconc,1,icycles,ianneal,1) # do the regen on the image
occ3D=get_occ_map('./expfiles_1/ising2D_occ.txt')
axes[1].imshow(np.transpose(occ3D[:,:,0]),interpolation='nearest',cmap='gray')
axes[1].axis("off")
imdat = read_bin('./expfiles_1/hk0.bin', npixels=64, offset=1280)
axes[2].imshow(np.flip(imdat,0),cmap='gray')
axes[2].axis("off")
my_metrics=get_metrics_compare_regens_test_set(xvar)
my_metrics2=get_metrics_ypred_ytest(xvar)
fig.suptitle("metrics(r2, mse, mae)\n corrfunc: %.3f, %.3f, %.3f \n FT_metrics: %.3f, %.3f, %.3f" %tuple(my_metrics) + "\n corrfunc test vs. pred: %.3f, %.3f, %.3f" %(my_metrics2[0], my_metrics2[1], my_metrics2[2]), fontsize=10, y=0.73)
xvar=np.random.randint(0,np.shape(X_test)[0],1)[0]
update_plot_regen(xvar)
# get_metrics_compare_regens_test_set(xvar)
update_plot_ypred(xvar)
#### might have to block average these metrics to get a better variance
#### wonder what happens when i put other types of images into the model
print(" metrics(r2, mse, mae)\n corrfunc test vs. pred: %.3f, %.3f, %.3f \n " %(tuple(get_metrics_ypred_ytest(xvar))))
metrics(r2, mse, mae) corrfunc test vs. pred: 0.995, 0.001, 0.015